Effective Phyto Therapeutic Agents for Parkinson's disease: Promising Medicinal Plants for Parkinson's Disease Management in Animal and Cellular Models

Nasrollah Naghdi, Mehdi Safari, Babak Gholamine

Resumo


Parkinson's disease is a progressive neurodegenerative disorder predominantly affecting the elderly, characterized by symptoms such as muscle rigidity, tremors, and impaired motor function. Despite the absence of a definitive cure, various pharmacological agents, notably levodopa, are employed to manage symptoms and enhance quality of life. Within the realm of traditional Iranian medicine, which boasts a rich history spanning thousands of years, Parkinson's disease is often referred to as tremors. Scholars in this field have documented the underlying causes, clinical manifestations, and natural remedies associated with tremors in numerous texts. This review aims to elucidate the pathophysiological mechanisms of Parkinson's disease while exploring herbal therapies documented in traditional Iranian practices. Notable medicinal plants, including Ferulago angulate, Curcuma longa, Foeniculum vulgare, Panax ginseng, Thymus vulgaris, Crocus sativus, Berberis vulgaris, Cinnamomum verum, Cuminum cyminum, and Gerbera jamesonii, have demonstrated efficacy in combating the disorder. These plants exhibit mechanisms that may counteract neuronal degeneration and reduce movement-related disabilities, thereby offering a multi-faceted strategy for managing Parkinson's disease. Future research should focus on elucidating the specific biochemical pathways involved and conducting clinical trials to validate the efficacy and safety of these herbal interventions. By bridging the gap between traditional knowledge and modern pharmacotherapy, we may enhance therapeutic outcomes for individuals living with Parkinson's disease.


Palavras-chave


central nervous system, Nerve disease, Parkinson's disease, Medicinal plants

Referências


POEWE W, SEPPI K, TANNER CM, HALLIDAY GM, BRUNDIN P, VOLKMANN J, SCHRAG AE, LANG AE. Parkinson disease. Nature reviews Disease primers. 2017 Mar 23;3(1):1-21.

BALESTRINO R, SCHAPIRA AH. Parkinson disease. European journal of neurology. 2020 Jan;27(1):27-42.

THENGANATT MA, JANKOVIC J. Parkinson disease subtypes. JAMA neurology. 2014 Apr 1;71(4):499-504.

BERGMAN H, DEUSCHL G. Pathophysiology of Parkinson's disease: from clinical neurology to basic neuroscience and back. Movement disorders: official journal of the Movement Disorder Society. 2002 Mar;17(S3): S28-40.

MOORE DJ, WEST AB, DAWSON VL, DAWSON TM. Molecular pathophysiology of Parkinson's disease. Annu. Rev. Neurosci.. 2005 Jul 21; 28:57-87.

HAMANI, C.; LOZANO, A M. Physiology and pathophysiology of Parkinson's disease. Annals of the New York Academy of Sciences. 2003 Jun;991(1):15-21.

SPATOLA, M.; WIDER, C. Genetics of Parkinson’s disease: the yield. Parkinsonism RelatDisord. 2014; 20(1): S35-S8.

SCHAPIRA, A.H. Neurobiology and treatment ofParkinson’s disease. Trends Pharmacol Sci. 2009;30(1): 41-

HIRTZ, D.; THURMAN, D.J.; GWINN-HARDY, K, et al. Howcommon are the “common” neurologic disorders?Neurology 2007;68(5):326-37.

VÁRADI, C. Clinical features of Parkinson’s disease: the evolution of critical symptoms. Biology. 2020 May 19;9(5):103.

JANKOVIC, J. Parkinson's disease: clinical features and diagnosis. Journal of Neurology Neurosurgery and Psychiatry. 2008 Apr 1;79(4):368-76.

RODRIGUEZ-OROZ, M.C.; JAHANSHAHI, M.; KRACK, P.; LITVAN, I.; MACIAS, R.; BEZARD, E.; OBESO, J. A. Initial clinical manifestations of Parkinson's disease: features and pathophysiological mechanisms. The Lancet Neurology. 2009 Dec 1;8(12):1128-39.

ASCHERIO, A.; SCHWARZSCHILD, M. A. The epidemiology of Parkinson's disease: risk factors and prevention. The Lancet Neurology. 2016 Nov 1;15(12):1257-72.

ASCHERIO, A.; SCHWARZSCHILD, M. A. The epidemiology of Parkinson's disease: risk factors and prevention. The Lancet Neurology. 2016 Nov 1;15(12):1257-72.

AASETH, J.; DUSEK, P.; ROOS, P M. Prevention of progression in Parkinson’s disease. Biometals. 2018 Oct; 31:737-47.

CALNE, D. B. Treatment of Parkinson's disease. New England Journal of Medicine. 1993 Sep 30;329(14):1021-7.

SINGH, N.; PILLAY, V.; CHOONARA, Y. E. Advances in the treatment of Parkinson's disease. Progress in neurobiology. 2007 Jan 1;81(1):29-44.

FARZAEI, M. H.; SHAHPIRI, Z.; MEHRI, M. R.; BAHRAMSOLTANI, R.; REZAEI, M.; RAEESDANA, A.; RAHIMI, R. Medicinal plants in neurodegenerative diseases: perspective of traditional Persian medicine. Current drug metabolism. 2018 Apr 1;19(5):429-42.

RABIEI, Z.; SOLATI, K.; AMINI-KHOEI, H. Phytotherapy in treatment of Parkinson’s disease: a review. Pharmaceutical biology. 2019 Jan 1;57(1):355-62.

SARRAFCHI, A.; BAHMANI, M.; SHIRZAD, H.; RAFIEIAN-KOPAEI, M. Oxidative stress and Parkinson’s disease: new hopes in treatment with herbal antioxidants. Current Pharmaceutical Design. 2016 Jan 1;22(2):238-46.

SANDHU, K. S, RANA, A C. Evaluation of anti-Parkinson’s activity of Nigella sativa (kalonji) seeds in chlorpromazine induced experimental animal model. Mortality. 2013;22(5):23.

ADEBAYO, O. G, BEN-AZU, B.; AKPOFURE, E.; MODO, E. U.; NDIDIAMAKA, I. P.; ENYA, J. I, et al. Zingiber officinale Roscoe extract improves nigrostriatal dopaminergic activity in rotenone-induced Parkinsonian mice: Implication of COX-2/TNF-α/IL-6 and antioxidant enzyme crosstalk in the immunoinflammatory responses. Phytomedicine Plus. 2024;4(4):100610.

KARTHIKKEYAN, G. et al. Identification of molecular network associated with neuroprotective effects of Yashtimadhu (Glycyrrhizaglabra L.) by quantitative proteomics of rotenone-induced Parkinson’s disease model. ACS Omega. 2020;5(41):26611-25.

KARTHIKKEYAN, G.; BEHERA, S. K.; UPADHYAY, S. S.; PERVAJE, R.; KESHAVA PRASAD, T. S.; MODI, P. K. Metabolomics analysis highlights Yashtimadhu (Glycyrrhizaglabra L.)-mediated neuroprotection in a rotenone-induced cellular model of Parkinson's disease by restoring the mTORC1-AMPK1 axis in autophagic regulation. Phytother Res. 2022 Mar 20. doi: 10.1002/ptr.7449.

SARBISHEGI, M.; CHARKHATGORGICH, E. A, KHAJAVI, O.; KOMEILI, G.; SALIMI, S. The neuroprotective effects of hydro-alcoholic extract of olive (Olea europaea L.) leaf on rotenone-induced Parkinson’s disease in rat. Metab Brain Dis. 2018; 33:79-88.

OCCHIUTO, F.; PALUMBO, D. R.; SAMPERI, S.; ZANGLA, G.; PINO, A.; PASQUALE, R. D, et al. The isoflavones mixture from Trifolium pratense L. protects HCN 1-A neurons from oxidative stress. Phytother Res. 2009;23(2):192-6.

MOON, H. I.; LEE, J. H. Neuroprotective effects of triterpene glycosides from Glycine max against glutamate induced toxicity in primary cultured rat cortical cells. Int J Mol Sci. 2012;13(8):9642-8.

RAJASANKAR, S.; MANIVASAGAM, T.; SANKAR, V.; PRAKASH, S.; MUTHUSAMY, R.; KRISHNAMURTI, A.; SURENDRAN, S. Withaniasomnifera root extract improves catecholamines and physiological abnormalities seen in a Parkinson's disease model mouse. J Ethnopharmacol. 2009;125(3):369-73.

XU, X.; LI, J.; LIU, M.; ZHANG, B. Neuroprotective effect of Marrubiin against MPTP induced experimental Parkinson’s disease in Male Wistar Rats. ToxicolMech Methods. 2024;1-13. (just-accepted).

KIM, J. B.; KOPALLI, S. R.; KOPPULA, S. Cuminum cyminum Linn (Apiaceae) extract attenuates MPTP-induced oxidative stress and behavioral impairments in mouse model of Parkinson’s disease. Trop J Pharm Res. 2016;15(4):765-72.

JAVED, H.; AZIMULLAH, S.; MEERAN, M. N.; ANSARI, S. A.; OJHA, S. Neuroprotective effects of thymol, a dietary monoterpene against dopaminergic neurodegeneration in rotenone-induced rat model of Parkinson’s disease. Int J Mol Sci. 2019;20(7):1538.

ÖZGEN, U.; ŞENER, S. Ö.; ŠMEJKAL, K.; VACLAVIK, J.; DENIZ, F. Ş.; ORHAN, I. E, et al. Cholinesterase and tyrosinase inhibitory potential and antioxidant capacity of Lysimachiaverticillaris L. and isolation of the major compounds. Turk J Pharm Sci. 2020;17(5):528.

KIASALARI, Z.; BALUCHNEJADMOJARAD, T.; ROGHANI, M. Hypericum perforatum hydroalcoholic extract mitigates motor dysfunction and is neuroprotective in intrastriatal 6-hydroxydopamine rat model of Parkinson’s disease. Cell MolNeurobiol. 2016; 36:521-30.

ASLANI, J.; HAJIZADEH MOGHADDAM, A.; FALLAH, MOHAMMADI, Z.; ISMAILI, A. H.; MOHAMMADI, R. Effects of hydro-alcoholic extract of Eriobotrya japonica Lindl. flowers on CDNF, SOD and MDA levels of cerebral cortex in experimental model of Parkinson's disease in rat. Iran J Med Aromat Plants Res. 2015;31(2):332-41.

BHOWMICK, S.; SARKAR, M.; HUSSAIN, J.; HASSAN, M.; BASUNIA, M.; NAHAR, T, et al. Curcuma longa extract ameliorates motor and cognitive deficits of 6-hydroxydopamine-infused Parkinson’s disease model rats. AdvTradit Med. 2021;1-15.

NEMATI, M.; HEMMATI, A. A.; NAJAFZADEH, H.; MANSOURI, M. T.; KHODAYAR, M. J. Evaluation of the effects of Foeniculum vulgare essence on behavioral-motor disorders of Parkinson’s disease induced by reserpine in ovariectomized and non-ovariectomized rats. Jundishapur J Nat Pharm Prod. 2018;13(1).

BALUCHNEJADMOJARAD, T.; ROGHANI, M.; MAFAKHERI, M. Protective effects of aqueous extract of Silybum marianum in 6-hydroxydopamine-induced model of parkinsonism in male rat: a behavioral, biochemical and histological study. Koomesh. 2011;12(4):459-65.

HATAMI, H.; DEHGHAN, G. The effect of ethanolic extract of Saffron (Crocus sativus L.) on improving the spatial memory parameters in the experimental models of Parkinson disease in male rats. J Adv Biomed Sci. 2015;5(4):534-41.

RAD, E. S.; EID, I. A.; MINAI-TEHRANI, D.; BONAKDAR, S.; SHOEIBI, S. Neuroprotective effect of root extracts of Berberis vulgaris (barberry) on oxidative stress on SH-SY5Y cells. J Pharmacoacupuncture. 2022;25(3):216.

LING, L.; JIANG, Y.; LIU, Y.; LI, H.; BARI, A.; ULLAH, R. et al. Role of gold nanoparticle from Cinnamomum verum against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) induced mice model. J PhotochemPhotobiol B. 2019; 201:111657.

VAN KAMPEN, J.; ROBERTSON, H.; HAGG, T.; DROBITCH, R. (2003). Neuroprotective actions of theginseng extracts G115 in two rodent models of Parkinson's disease. ExperimentalNeurology. 184(1):521-9.

KIM, M. S.; LEE, J. I.; LEE, W. Y.; KIM, S. E. (2004). Neuroprotective effect of Ginkgo biloba L. extract in a rat model of Parkinson's disease. Phytother Res. 18(8):663-6.

IMANSHAHIDI, M.; AND HOSSEINZADEH, H. (2008). Pharmacological and Therapeutic Effectsof Berberis vulgaris and its Active Constituent, Berberine. Phytotherapyreaserch. 22:999-1012.

ARAYNE, M. S.; SULTANA, N.; SHERBAHADUR, S. (2007). The berberis story Berberis vulgaris intherapeutics.pak.j.sci. 20(1): 83-92.

VUDDANDA, P. R.; CHAKRABORTY, S.; SINGH, S. (2010). Berberine: a potential phytochemicalwith multispectrum therapeutic activities. Expert OpinInvestig Drugs. 19(10):1297-307.

SALAR, F.; ZIAIY, A.; NASRI, S.; ROGHANI, M.; KAMALINEJAD, M. (2010). Neuronal protective effect of aqueous extract of barberry in rats model of Parkinson's disease. J Iran Anat Sci. 4(36): 89-96.

RANASINGHE, P.; PIGERA, S.; PREMAKUMARA, G. S.; GALAPPATHTHY, P.; CONSTANTINE, G. R.; KATULANDA, P. Medicinal properties of ‘true’cinnamon (Cinnamomumzeylanicum): a systematic review. BMC complementary and alternative medicine. 2013; 13: 1-0.

NARAYANANKUTTY, A.; KUNNATH, K.; ALFARHAN, A.; RAJAGOPAL, R.; RAMESH, V. Chemical composition of Cinnamomum verum leaf and flower essential oils and analysis of their antibacterial, insecticidal, and larvicidal properties. Molecules. 2021 Oct 19;26(20):6303.

ANGELOPOULOU, E.; PAUDEL, Y. N.; PIPERI, C.; MISHRA, A. Neuroprotective potential of cinnamon and its metabolites in Parkinson's disease: Mechanistic insights, limitations, and novel therapeutic opportunities. Journal of biochemical and molecular toxicology. 2021 Apr;35(4): e22720.

WANG, Y. C.; WANG, V.; CHEN, B. H. Analysis of bioactive compounds in cinnamon leaves and preparation of nanoemulsion and byproducts for improving Parkinson’s disease in rats. Frontiers in Nutrition. 2023;10.

MNIF, S.; AIFA, S. Cumin (Cuminum cyminum L.) from traditional uses to potential biomedical applications. Chemistry & biodiversity. 2015 May;12 (5):733-42.

SRINIVASAN, K. Cumin (Cuminum cyminum) and black cumin (Nigella sativa) seeds: traditional uses, chemical constituents, and nutraceutical effects. Food quality and safety. 2018 Mar;2(1):1-6.

KIM, J. B.; KOPALLI, S. R, KOPPULA, S. Cuminum cyminum Linn (Apiaceae) extract attenuates MPTP-induced oxidative stress and behavioral impairments in mouse model of Parkinson’s disease. Tropical Journal of Pharmaceutical Research. 2016;15(4):765-72.

NOBAKHT, S. Z.; AKABERI, M.; MOHAMMADPOUR, A. H.; MOGHADAM, A. T.; EMAMI, S. A. Hypericum perforatum: Traditional uses, clinical trials, and drug interactions. Iranian Journal of Basic Medical Sciences. 2022 Sep;25(9):1045.

GHASEMIPIRBALOUTI, A.; FATAHI-VANANI, M.; CRAKER, L.; SHIRMARDI, H. Chemical composition and bioactivity of essential oils of Hypericumhelianthemoides. Hypericum perforatum and Hypericumscabrum. Pharmaceutical biology. 2014 Feb 1;52(2):175-81.

VECCHIA, D. D.; SCHAMNE, M. G.; FERRO, M. M.; SANTOS, A. F.; LATYKI, C. L.; LARA, D. V.; BEN, J.; MOREIRA, E. L.; PREDIGER, R. D.; MIYOSHI, E. Effects of Hypericum perforatum on turning behavior in an animal model of Parkinson's disease. Brazilian Journal of Pharmaceutical Sciences. 2015 Jan; 51:111-5.

KIASALARI, Z.; BALUCHNEJADMOJARAD, T.; ROGHANI, M. Hypericum perforatum hydroalcoholic extract mitigates motor dysfunction and is neuroprotective in intrastriatal 6-hydroxydopamine rat model of Parkinson’s disease. Cellular and Molecular Neurobiology. 2016 May; 36:521-30.

PAJARES, M. I ROJO, A.; MANDA, G.; BOSCÁ, L.; CUADRADO, A. Inflammation in Parkinson's Disease: Mechanisms and Therapeutic Implications. Cells. 2020 Jul 14;9(7):1687. doi: 10.3390/cells9071687. PMID: 32674367; PMCID: PMC7408280.

NGUYEN, N. N. T.; VO, D. L.; DANG, D. K.; HUYNH, T. H.; HA, C. T. Comparative study of the antibacterial and anti-inflammatory activities of the seed coat vs. seed kernel extracts from the plant Mangifera indica L. in inflammatory acne treatment. J HerbmedPharmacol. 2023;12(4):575-584. doi: 10.34172/jhp.2023.48081.

KIM, Y.; LEE, S.; CHOI, Y. A.; CHUNG, J. M.; KIM, E. N.; LEE, B, et al. Magnolia kobus DC leaf ethanol extract alleviated lipopolysaccharide-induced acute lung inflammation by suppressing NF-κB and Nrf2 signaling. J HerbmedPharmacol. 2024;13(1):90-100. doi: 10.34172/jhp.2024.48116.

This is an open-access article distributed under the terms of the Creative Commons Attribution License


Texto completo: PDF

Apontamentos

  • Não há apontamentos.


 


 

 

Counters
Visitas