Crescimento da curimatã comum, Prochilodus cearaensis (Steindachner,1911) em sistema de recirculação de água (SRA) em três diferentes densidades de estocagem.

Maria Audália Marques de Carvalho, Raimundo Bezerra da Costa, Luana da Anunciação Silva, Cecilia Guedes de Oliveira, Luiz Antônio Moreira Miranda Miranda, Lucas Paes Martins, Ronaldo de Oliveira Sales, José Oriani Farias

Resumo


Juvenile fish of Prochilodus cearensis with different initial sizes (n = 180), but of the same age and representing three different stocking densities (DE): Group P (small; DE = 0.09g.L-1), Group M (medium ; DE = 0.15g.L-1) and Group G (large; DE = 0.3g.L-1) were distributed in four 1000L tanks in a simple closed recirculation system (RAS) in order to investigate captive growth. Commercial feed (FreeRibe 35% PB) for fish was supplied three times a day. The stocking density (DE) influenced fish growth in terms of final biomass (B), biomass gain (GB) and final average weight (PM). Group P with an initial PM of 1.9g and DE 0.09g.L-1 through compensatory growth, reached biomass, biomass gain and average final weight higher than groups M and G respectively. The separation of individuals by weight and total length suggests the possibility of a more homogeneous growth in the production of common curimatã, reducing the effect of dominance and heterogeneous growth. Although in this simple SRA module, curimatã has not achieved satisfactory growth, its production in captivity can be used to feed more noble meat fish with greater commercial value. However, it is suggested that stress tests be carried out to verify the level of confinement on the well-being of common curimatã in SARS. In addition, different from commercial feed formulations, probably containing a higher percentage of antioxidants and adapted to the dietary habit of iliophages / detritivores need to be tested in order to find the best solution for the maximum growth of P. cearensis in captivity.

Palavras-chave


Prochilodus cearensis; weight gain; stocking density

Referências


ALVES, D.E.O.; SILVA, M.F. M.;MOLINA, W.F.; GAVILAN, S.A.; COSTA, L.; NASCIMENTO, R.S.S. Desenvolvimento ontogenético inicial de Prochilodus brevis (Steindachner, 1875) (Characiformes). v. 6, n. 1, p. 70-75, 2016. Disponível em http://periodicos.unifap.br/index.php/biota

ABREU, K.L.; CARVALHO, M.A.M.; COSTA; R.B.; CATUNDA, A.G.V.; SALES, R.O; VELOSO-FREITAS, G. Policultivo curimatã comum, Prochilodus cearensis com tilápias. Polyculture of common curimatã, Prochilodus cearensis with Tilapia.Revista Brasileira de Higiene e Sanidade Animal v.10, n.3, p. 462 – 475, jul/set 2016. http://dx.doi.org/10.5935/1981-2965.20160038. www.higieneanimal.ufc.br/seer/index.php/higieneanimal/article/download/.../1857.

ANGELESCU V, GNERI F. S. Adaptaciones del aparato digestivo al régimen alimentario em algunos peces iliófagos Del Río Uruguay y Río de la Plata. RevInstNaclnv. Cienc Nat. 1: 161-272. 1949.

BADIOLA, M., MENDIOLA, D., BOSTOCK, J. Recirculating Aquaculture systems (RAS) analysis: main issues on management and future challenges. Aqua. Eng.,51, 26–35. 2012. https://doi.org/10.1016/j.aquaeng.2012.07.004.https://www.sciencedirect.com/science/article/pii/S014486091200060X?via%3Dihub

BADIOLA, M.; BASURKO, O.C.; PIEDRAHITA, R.; P.HUNDLEY, P. D.MENDIOLA, D. Energy use in Recirculating Aquaculture Systems (RAS): A review. Aquacult. Eng. v.81, p.57-70. 2018.

https://www-sciencedirect.ez76.periodicos.capes.gov.br/science/article/pii/S0144860917302327

BERGHEIM, A., DRENGSTIG, A., ULGENENS, Y., FIVELSTAD, S.. Production of Atlantic salmons molts in Europe – Current characteristics and future trends.Aquacult.Eng.11 41, 46- 52.doi: 2009.

https://www.sciencedirect.com/science/article/pii/S014486090900034X

BERNARDES, C.L.; PÚBLIO, J.Y. PROTEÍNA bruta no desenvolvimento de curimbas (Prochilodus scrofa). Crude protein in developing curimbas (Prochilodus scrofa). Semina: Ciências Agrárias, Londrina, v. 33, n. 1, p. 381-390, jan./mar. 2012. DOI: 10.5433/1679-0359.2012v33n1p381.

BRAGNBALLE, J. A Guide to Recirculation Aquaculture. Eurofish Publisher, 2015. 100pp. http://www.fao.org/3/a-i4626e.pdf

BRAUN, N.; DAFRE, A.L.; LIMA, R.L.; BEUX,L.F.; BROL, F.F.;NUÑER, A.P.O. Notas Científicas: Growth and stress of dourado cultivated in cages at different stocking densities. Pesq. Agropec. Bras., Brasília, v.48, n.8, p.1145-1149, 2013. http://dx.doi.org/10.1590/S0100-204X2013000800050.

COSTA; R.B.; CARVALHO, M.A.M; ABREU, K.L.; SENA, A.M; JOSÉ ORIANI FARIAS, J.O. VIDAL, D.L; SALES, R.O.; MAGGIONI, R. Criação da curimatã comum, Prochilodus cearaensis Steindachner, 1911, em tanque rede.Rev. Bras. Higi. Sanid. Anim. v.9, n.3, p. 482-492. 2015. http://dx.doi.org/10.5935/1981-2965.20150044

http://www.higieneanimal.ufc.br/seer/index.php/higieneanimal/article/view/278/961.

COSTA; R.B.; ABREU, K.L.; CARVALHO, M.A.M ; FARIAS, J.O. ;FREITAS, G.V.; SALES, R.O.; CATUNDA, A.G.V.; MEDEIROS, I. R.; DE SENNA, A.M. Participação do pescador(a) artesanal no policultivo da curimatã comum (Prochilodus cearaensis) com tilápia do Nilo (Oreochromis niloticus). Rev. Bras. de Higi. e Sanid. Anim. v.10, n.4 p. 556 – 571, out – dez.2016. http://www.higieneanimal.ufc.br/seer/index.php/higieneanimal/article/view

DEDIU, L., CRISTEA, V., & XIAOSHUAN, Z. Waste production and valorization in an integrated aquaponic system with bester and lettuce. African J. of Biotechnol., v.11, n.9, 2349-2358. 2012. https://www.ajol.info/index.php/ajb/article/view/100608/89827

DELLA ROSA, P.; ROUX, J.P.; SÁNCHEZ, S.; ORTIZ, J.C.; DOMITROVIC, H.A. Productividad del sábalo (Prochilodus lineatus) cultivado en estanques con diferentes tipos de fondo. Rev. Vet v.25, n.2: 126-130, 2014. www.vet.unne.edu.ar

GALDIOLLI, E.M. et al., Substituição da proteína do farelo de soja pela proteína do farelo de canola em rações para alevinos de curimbatá (Prochilodus lineatus). Rev. Bras,. Zootec. v.3, n.2, p.552-559.2002. http://www.scielo.br/pdf/rbz/v31n2/10339.pdf

GREGERSEN, K.J.J, PEDERSEN, P.B, PEDERSEN, L-F, DALSGAARD, J. Micro particles and microbial activity in Danish recirculating rainbow trout (Oncorhynchus mykiss) farms. Aquacult. Eng., 84, 60–66,2019. https://doi.org/10.1016/j.aquaeng.2018.12.001.

GUO, H.Y., DONG, X.Y., ZHANG, X.M., ZHANG, P.D., & LI, W.T. Survival, growth and physiological responses of juvenile Japanese flounder (Paralichthys olivaceus, Temminck & Schlegel, 1846) exposed to different dissolved oxygen concentrations and stocking densities. J. of Appl. Ichthyol., 33(4), 731–739. 2017.https://doi.org/10.1111/jai.13369

HAINFELLNER, P.; SOUZA, T.G.; MOREIRA, R.G.;NAKAGHI, L.S.O.; BATLOUNI, S.R. Gonadal steroids levels and vitellogenesis in the formation of oocytes in Prochilodus lineatus (Valenciennes) (Teleostei: Characiformes). Neotrop. Ichthyol., 10(3):601-612, 2012. In: http://www.scielo.br/pdf/ni/v10n3/aop1912 .

KOLAREVIC, J., SELSET, R., FELIP, O., GOOD, C., SNEKVIK, K., TAKLE, H.,YTTEBORG, E., BÆVER-FJORD, G., ÅSGÅRD, T., TERJESEN, B.F. Influence of long term ammonia exposure on Atlantic salmon (Salmo salar L.) parr growth and welfare. Aquac. Res. v.44, p.1649–1664. 2013. https://doi.org/10.1111/j.1365-2109.2012.03170.x

LE, T.T.H.; FETTIG, J; MEON, G. Kinetics and simulation of nitrification at various pH values of a polluted river in the tropics. Ecohydrol. Hydrobiol.v.19, n.1, p.54-65.2019. https://doi.org/10.1016/j.ecohyd.2018.06.006

LIMA, J. DE F., TAVARES-DIAS, M., YOSHIOKA, E.T.O., SANTOS, E.F. DOS, DUARTE, S.S., BASTOS, A.M., MONTAGNER, D. Sistema Fechado Simples de Recirculação para Recria de Peixes ou Camarões de Água-Doce. EMBRAPA. ComunicadoTécnico, n.136. 2015. 8p. ISSN 1517-4077.22. https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1026235/1/CPAFAP2015COMTEC136RecirculacaocamaraoV61.pdf

LIU, Y.; LIU, H.;WU, W.; YIN, J.; MOU, Z. Effects of stocking density on growth performance and metabolism of juvenile Lenok (Brachymystax lenok) . Aquaculture. v. 504,p. 107-113. 2019. https://doi.org/10.1016/j.aquaculture.2019.01.058

MARTINS, C.I.M.; EDINGA, E.H.; VERDEGEMA, M.C.J.; HEINSBROEKA, L.T.N.; SCHNEIDERC, O.; BLANCHETOND, J.P.; D’ORBCASTELD, E.R., VERRETH, J.A.J. New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquacult. Eng., 43: 83-93, 2010. http://dx.doi.org/10.1016/j.aquaeng.2010.09.002.

MENIM, E.; MIMURA, O.M. Anatomia do estômago de duas espécies de peixes de água doce, Prochilodus margraavii (Walbaun,1792) e Prochilodus affinis, Reinhardt, 1874) (Chracaciformes, Prochilodontidae), de hábito alimentar iliófago. Rev. CERES, v.40, n,229, p.253-271.1993.

MIRZOYAN, N.; PARNES, S.; SINGER, A.; TAL, Y.; SOWERS, K., GROSS, A. Quality of brackish aquaculture sludge and its suitability for anaerobic digestion and methane production in an up flow anaerobic sludge blanket (UASB) reactor. Aquaculture, 279: 35–41, 2008. https://www.sciencedirect.com/science/article/pii/S004484860800286X

NAKATANI, K.; AGOSTINHO, A.A.; BAUMGARTNER, G.; BIALETZKI, A.; SANCHES, P.V.; CAVICCHIOLI, M. Ovos e larvas de peixes de água doce, desenvolvimento e manual de identificação. Maringá: UEM/Nupélia.2001.378p. ill.

https://www.worldcat.org/title/ovos-e-larvas-de-peixes-de-agua-doce-desenvolvimento-e-manual-de-identificacao/oclc/709512743

NASCIMENTO, W.S.; ARAÚJO, A.S.; BARROS, N.H.C.; GURGEL, C.L.L.; COSTA, E.F.S.; CHELLAPPA, S. Technical contribution. length–weight relationship for seven freshwater fish species from Brazil. J. Appl. Ichthyol.n.28, 272–274. 2012. https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1439-0426.2011.01906.x

PEREIRA, R.A.C.; RESENDE, E.K. Peixes detritívoros da planície inundável do Rio Miranda, Pantanal, Mato Grosso do Sul, Brasil. Corumbá: EMBRAPA PANTANAL, 1998. 50p. (Embrapa Pantanal. Boletim de Pesquisa, 12). https://ainfo.cnptia.embrapa.br/digital/bitstream/item/37441/1/BP12.pdf

SALAS-LEITON, E.; ANGUIS, V.; MARTINS-ANTONIO. B. et al. Effect of stocking density and feed ration on growth and gene expression in Senegalese sole (Solea senegalensis):potential effect on immune response. Fish Selfish Immunol. v.28, n.2. p.296. 2010. https://www.sciencedirect.com/science/article/pii/S105046480900360X?via%3Dihub

SUMMERFELT, S.T.; ZÜHLKE, A.; KOLAREVIC, J.; REITEN, B.K.M.; SELSET, R.; GUTIERREZ, X.; & TERJESEN, B.F. Effects of alkalinity on ammonia removal, carbon dioxide stripping, and system pH in semi-commercial scale water recirculating aquaculture systems operated with moving bed bioreactors. Aquacult. Engin., 65, 46-54. 2015. https://www.sciencedirect.com/science/article/pii/S0144860914001149?via%3Dihub

TRYGGVASON, A.T. A Systematic View on a Recirculating Aquaculture System: Causality Relation Between Variables. Master’s thesis, Faculty of Industrial Engineering, Mech. Engin. and Comp. Sci., University of Iceland, pp. 65. 2016. https://skemman.is/handle/1946/26224?localeen

VAN DE NIEUWEGIESSEN, P.G.; BOERLAGE, A.S.; VERRETH, J.A.J.; SCHRAMA, J. Assessing the effects of a chronic stressor, stocking density, on welfare indicators of juvenile African catfish, Clarias gariepinus Burchell. Appl. Anim. Behav. Sci., v.115, p.233‑243, 2008. https://doi.org/10.1016/j.applanim.2008.05.008

VAN RIJN, J. The potential for integrated biological treatment systems in recirculating fish culture - a review. Aquaculture, 139: 181–201, 1996. https://doi.org/10.1016/0044-8486(95)01151-X

YAARAHMADI . P.; MIANDARE, H.K.; FAYAZ, S.; CAIPANG, C.M.A. Increased stocking density causes changes in expression of selected stress- and immune-related genes, humoral innate immune parameters and stress responses of rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology v.48, p43-53, 2016. https://www.ncbi.nlm.nih.gov/pubmed/26549176

ZACHRITZ I.I.; W.A., HANSON, A.T., SAUCEDA, J.A.; FITZSIMMONS, K.M. Evaluation of submerged surface flow (SSF) constructed wetlands for recirculating tilapia production systems. Aquac. Eng. 39, 16–23. 2008. DOI: 10.1016/jaquaeng.2008.05.001 https://www.researchgate.net/publication/222241452_Evaluation_of_submerged_surface_flow_SSF_constructed_wetlands_for_recirculating_tilapia_production_systems.


Texto completo: PDF

Apontamentos

  • Não há apontamentos.


 


 

 

Counters
Visitas