Definição sexual: existe um padrão na sexualidade dos peixes? Uma Revisão.

Raimundo Bezerra da Costa, Ronaldo de Oliveira Sales, Rodrigo Maggion, Dea Lima Vidal, José Oriani Farias

Resumo


The fish are found in the most diverse aquatic habitats, ranging from high altitudes the depressions far below sea level, which reflects a wide range of existing species. This condition is due to diversity genomics be enriched by the fusion of the gametes in the training of individuals and in sex determination. Of genetic recombinations, during the processes of cell division and reproductive strategies, which result in a broad adaptive plasticity, both biological and ecological. All this becomes possible through the playback, where also if there is a great diversity of forms, even if there is a pattern of sexual development as well defined as male or female in the majority of species, constituting the gonochorists, and a small fraction formed by types of reproductive unisexual sessile and hermaphrodites. The explanation of this diversity has as a basis the property of retaining the dual sexual potentiality of primordial germ cells, found in different stages in gonadogenesis, and by their ability to differentiate during the reproductive life, a biological base kept by teleosts, constituting all plasticity. For this reason, it was possible to observe species that show great stability and other very labile to change the sex throughout their life. These different forms of reproduction has its origin in the great variety of mechanisms responsible for both sex determination as to formation of patterns of sexual differentiation, which include a genetic basis, with monogenic and polygenic systems, and the influence of different environmental factors, mainly temperature and social interactions. Although the mechanisms of sex determination and differentiation are conserved in mammals and birds, in fish seem to be very unstable. This suggests that, in evolutionary terms, an accumulation of evidence of participatory process in favor of a unification of strategies that emphasize the genetic factors and the environment. In particular, it seems that the environmental factors govern the force responsible for sexual development and by developments in all levels, with the selection and genetic drift having been responsible for establishing a standard capable of characterizing the current sexual determination. Thus, the proposal would be: in what way or in what level these factors contribute to driving the evolutionary process, independent of any context and in a way wholly holistic.


Palavras-chave


sexuality in fish; diversity; plasticity; determination of sex; sexual differentiation; sexual evolution.

Referências


AMORES, A., FORCE, A., YAN, Y.L., JOLY, L., AMEMIYA, C., FRITZ, A., HO, R.K., LANGELAND, J., PRINCE, V., WANG, Y.L., WESTERFIELD, M., EKKER, M., POSTLETHWAIT, J.H. Zebrafish Hox gene clusters and vertebrate genome evolution. Science 282:1711–1714, 1998.

AVISE, J.C., QUATTRO, J.M., VRIJENHOEK, R.C. Molecular clones within organismal clones: mitochondrial DNA phylogenies and the evolutionary histories of unisexual vertebrates. Evolutionary Biology 26: 225–246, 1992.

AVISE, J.C., MANK, J.E. Evolutionary Perspectives on Hermaphroditism in Fishes. Sex Dev, 3:152–163, 2009.

BALDO, L., SANTOS, M.E., SALZBURGER, W. Comparative transcriptomics of Eastern African cichlid fishes shows signs of positive selection and a large contribution of untranslated regions to genetic diversity. Genome Biol Evol., 3: 443–455, 2011.

BAROILLER, J.F., GUIGEN, Y., FOSTIER, A. Endocrine and environmental aspects of sex differentiation in fish. Cell. Mol. Life Sci., 55: 910–931, 1999.

BEULBENS, K., EDING, E.H.,GILSON, P., OLIVIER, F., KOMEN, J., RICHTER, C.J.J. Gonadal differentiation, intersexuality and sex ratios of European eel (Anguilla anguilla L.) maintained in captivity. Aquaculture, 153: 135-150, 1997.

BHANDARI, R.K., KOMURO, H., NAKAMURA, S., HIGA, M., NAKAMURA, M. Gonadal restructuring and correlative steroid hormone profiles during natural sex change in protogynous honeycomb grouper, Epinephelus merra. Zool. Sci., 20:1399-1404, 2003.

BÖHNE, A., HEULE, C., BOILEAU, N., SALZBURGER, W. Expression and Sequence Evolution of Aromatase cyp19a1 and Other Sexual Development Genes in East African Cichlid Fishes. Mol. Biol. Evol. doi:10.1093/molbev/mst124. Advance Access publication July 24, 2013.

CAPEL, B. Sex in the 90s: SRY and the switch to the male pathway. Annu. Rev. Physiol., 60: 497-523, 1998.

CHANG, C.F., LEE, M.F, CHEN, G.L. Estradiol-17β associated with the sex reversal in protandrous black porgy, Acanthopagrus schlegeli. J Exp Zool, 268: 53–58, 1994.

CRAIG, J.K., FOOTE, C.J., WOOD, C.C. Evidence for temperature dependent sex determination in sockeye salmon (Oncorhynchus nerka). Can J Fish Aquat Sci., 53:141–147, 1996.

de MITCHESON, Y.S., LIU, M. Functional hermaphroditism in teleosts. FISH and FISHERIES, 9: 1–43, 2008.Devlin, R.H., Nagahama, Y. Sex determination and sex differentiation in fish: An overview of genetic, physiological, and environmental influences. Aquaculture, 208: 191-364, 2002.

FISHELSON, L, HILZERMAN, F. Flexibility in reproductive styles of male St. Pater’s tilapia Sarotherodon galilaeus (Cichlidae). Env Biol Fish., 63: 173–182, 2002.

FORCONI, M., CANAPA, A., BARUCCA, M., BISCOTTI, M.A., CAPRIGLIONE, T., Buonocore, F., Fausto, A.M., Makapedua, D.M., Pallavicini, A., Gerdol, M., De Moro, G., Scapigliati, G., Olmo, E., Schartl, M. Characterization of Sex Determination and Sex Differentiation Genes in Latimeria. PLoS ONE 8: 2013.

GAUTIER, A., SOHM, F., JOLY, J.S., LE GAC, F., LAREYRE, J.J. The proximal promoter region of the zebrafish gsdf gene is sufficient to mimic the spatio-temporal expression pattern of the endogenous gene in Sertoli and granulosa cells. Biol Reprod., 85: 1240–1251, 2011.

GERRARD, D.T., MEYER, A. Positive selection and gene conversion in SPP120, a fertilization-related gene, during the East African cichlid fish radiation. Mol Biol Evol., 24:2286–2297, 2007.

GODWIN, J. Social determination of sex in reef fishes. Seminars in Cell & Developmental Biology, 20: 264–270, 2009.

GODWIN, J. Neuroendocrinology of sexual plasticity in teleost fishes. Front Neuroendocrinol, 31:203–216, 2010.

GRIER, H. Ovarian germinal epithelium and folliculogenesis in the common snook, Centropomus undecimalis (Teleostei: centropomidae). J Morphol., 243: 265–281, 2000.

GROBER, M.S. Socially controlled sex change: integrating ultimate and proximate level of analysis. Acta Ethol., 1: 3–17, 1998.

GUI, J. F., ZHU, Z. Y. Molecular basis and genetic improvement of economically important traits in aquaculture animals. Chin Sci Bull., 57: 1751 – 2012.

GUIGUEN, Y., BAROILLER, J.F., RICORDEL, M.J., ISEKI, K., MC MEEL, O.M., MARTIN, S.A., FOSTIER, A. Involvement of estrogens in the process of sex differentiation in two fish species: The rainbow trout (Oncorhynchus mykiss) and a tilapia (Oreochromis niloticus). Mol. Reprod., Dev., 54:154-162, 1999.

HAMAGUCHI, S. Sex differentiation of germ cells and their supporting cells in Oryzias latipes. J. Fish Biol., 4:11-17, 1992.

HATTORI, R.S., MURAI, Y., OURA, M., MASUDA, S., MAJHI, S.K., SAKAMOTO, T., FERNANDINO, J.I., SOMOZA, G.M., YOKOTA, M., STRÜSSMANN, C.A. A Y-linked anti-Müllerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci U S A. 109: 2955–2959, 2012.

HAYES,T. Sex determination and primary sex differentiation in amphibians: Genetic and developmental mechanism. J Exp Zool., 281: 373-399, 1998.

HELFMAN, G.S., COLLETTE, B.B., FACEY, D.E., BOWEN, B.W. The diversity of fishes. Biology, Evolution, and Ecology. John Wiley & Sons, 2nd ed., Oxford, UK, 2009. 720p.

HOAR, W.S. Reproduction. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 3. Academic Press, New York, pp 1–72, 1969.

HONG, C-S., PARK, B-Y., SAINT-JEANNET, J-P. The function of Dmrt genes in vertebrate development: It is not just about sex. Developmental Biology, 310: 1–9, 2007.

HUTCHINGS, J.A., BISHOP, T.D., MCGREGOR-SHAW, C.R. Spawning behaviour of Atlantic cod Gadus morhua: evidence of mate competition and mate choice in a broadcast spawner. Can J Fish Aquat Sci., 56: 97–104, 1999.

KAMIYA T, KAI W, TASUMI S, et al. (16 co-authors). A trans-species missense SNP in amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (Fugu). PLoS Genet. 8:e1002798, 2012.

KITANO, T., TAKAMUNE, K., KOBAYASHI, T., NAGAHAMA, Y., ABE, S.I. Suppression of P450 aromatase gene expression in sex-reversed males produced by rearing genetically female larvae at a high water temperature during a period of sex differentiation in the Japanese flounder (Paralichthys olivaceus). J Mol Endocrinol., 23:167–176, 1999.

KOBAYASHI, Y., NAGAHAMA, Y., NAKAMURA, M. Diversity and Plasticity of Sex Determination and Differentiation in Fishes. Sex Dev, 7:115–125, 2013 - (DOI: 10.1159/000342009).

KOKOKIRIS, L., FOSTIER, A., ATHANASSOPOULOU, F., PETRIDIS, D., KENTOURI, M. Gonadal changes and blood sex steroids levels during natural sex inversion in the protogynous mediterranean red porgy, Pagrus pagrus (TELEOSTEI: SPARIDAE). Gen Comp Endocrinol, 149: 42–48, 2006.

KOOPMAN, P., GUBBAY, J., VIVIAN, N., GOODFELLOW, P., LOVELL-BADGE, R. Male development of chromosomally female mice transgenic for Sry. Nature 351:117–121, 1991.

KORPELAINEN, H. Sex ratios and conditions required for environmental sex determination in animals. Biol Rev Camb Phil Soc., 65: 147–184, 1990.

KUWAMURA, T., NAKASHIMA, Y., YOGO, Y. Sex change in either direction by growth rate advantage in the monogamous goby Paragobiodon echnocephalus. Behav Ecol., 5: 434–438, 1994.

LEE, B.Y., KOCHER, T.D. Exclusion of Wilms tumour (WT1b) and ovarian cytochrome P450 aromatase (CYP19A1) as candidates for sex determination genes in Nile tilapia (Oreochromis niloticus). Anim Genet., 38: 85–86, 2007.

LUCKENBACH, J.A., GODWIN, J., DANIELS, H.V., BORSKI, R.J. Gonadal differentiation and effects of temperature on sex determination in southern flounder (Paralichthys lethostigma). Aquaculture, 216: 315–327, 2003.

MANK, J.E., PROMISLOW, D.E.L., AVISE, J.C. Evolution of alternative sex determining mechanisms in teleost fishes. Biol J Linn Soc Lond., 87: 83–93, 2006.

MANOLAKOU P., LAVRANOS G., ANGELOPOULO, R. Molecular patterns of sex determination in the animal kingdom: A comparative study of the biology of reproduction. Reprod. Biol. Endocrinol., 13: 4-59, 2006.

MATSUDA, M., NAGAHAMA, Y., SHINOMIYA, A., SATO, T., MATSUDA, C., KOBAYASHI, T., MORREY, C.E., SHIBATA, N., ASAKAWA, S., SHIMIZU, N., HORI, H., HAMAGUCHI, S., SAKAIZUMI, M. DMY is a Y-specific, DM-domain gene, required for male development in the medaka (Oryzias latipes) fish. Nature, 417:559-563, 2002.

MATSUDA, M. Sex determination in fish: lessons from the sexdetermining gene of the teleost medaka, Oryzias latipes. Dev Growth Differ 45:397–403, 2003.

MATSUDA, M., SHINOMIYA, A., KINOSHITA, M., SUZUKI, A., KOBAYASHI,T., PAUL-PRASANTH, B., LAU, E.L., HAMAGUCHI, S., SAKAIZUMI, M., NAGAHAMA, Y. DMY gene induces male development in genetically female (XX) medaka fish. Proc Natl Acad Sci USA 104:3865–3870, 2007.

McANDREW, B., NAPIER, J. FORESIGHT PROJECT ON GLOBAL FOOD AND FARMING FUTURES. Application of genetics and genomics to aquaculture development: current and future directions. Journal of Agricultural Science, 1-9, 2010.

MUNDAY, P.L., BURSTON, P.M., WARNER, R.R. Diversity and flexibility of sex change strategies in animals. Trends Ecol Evol, 21: 89-95, 2006a.

MUNDAY, P.L., WILSON, W., WARNER, R.R. A social basis for the development of primary males in a sex changing fish. Proc R Soc London, 273B: 2845-2851, 2006b.

MYOSHO, T., OTAKE, H., MASUYAMA, H., MATSUDA, M., KUROKI, Y., FUJIYAMA, A., NARUSE, K., HAMAGUCHI, S., SAKAIZUMI, M. Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics, 191:163–170, 2012.

NAKAMURA, M., KOBAYASHI, T., CHANG, X.-T., NAGAHAMA, Y. Gonadal sex differentiation in teleost fish. J. Exp. Biol., 281:362-372, 1998.

NANDA, I., KONDO, M., HORNUNG, U., et al. (12 co-authors). A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc Natl Acad Sci., U S A. 99: 11778–11783, 2002.

NELSON, J.S. Fishes of the World. 4a. Ed., 2006. 624p. ISBN: 978-0-471-25031-9

PANDIAN, T.J. Sexuality in Fishes. CRC Press. Taylor & Francis Group, New York, UK. 2011a. 189p. ISBN 978-1-57808-685-6 – www.crcpress.com

PANDIAN, T.J. Sex Determination in Fish. CRC Press. Taylor & Francis Group, New York, UK. 2011b. 282p. ISBN 978-1-57808-748-8- www.taylorandfrancisgroup.com.

PANDIAN, T.J. Genetic Sex Differentiation in Fish. CRC Press. P.O. Box 699, Enfield, NH 03748, Taylor & Francis Group, New York, UK. 2012. 214p. ISBN 978-1-57808-799-0 - www.taylorandfrancisgroup.com.

PANDIAN, T., KOTEESWARAN, R. Ploidy induction and sex control in fish. Hydrobiologia, 384:167-243, 1998.

PARENTI, L.R., GRIER, H. Evolution and phylogeny of gonad morphology in bony fishes. Integr Comp Biol., 44:333–348, 2004.

PARKER, G.A. The evolution of sexual size dimorphism in fish. J. Fish Biol., 41:1-20, 1992.

PATIÑO, R., TAKASHIMA, F. Gonads. In: Takashima F, Hibiya T (eds) An atlas of fish histology, normal and pathological features. Kodanska/Gustav Fisher, Tokyo, pp 128–153, 1995.

PETERSEN, C.W., WARNER, R.R., COHEN, S., HESS, H.C., HEWELL, A.T. Variable pelagic fertilization success: implications formate choice and spatial patterns of mating. Ecology, 7: 391–401, 1992.

PIFERRER F., GUIGUEN, Y. Fish Gonadogenesis. Part II: Molecular biology and genomics of sex differentiation. R. Fish. Sci., 16:35-55, 2008.

PIZZARI, T., BIRKHEAD, T.R. The sexually-selected sperm hypothesis: sex biased inheritance and sexual antagonism. Biol Rev., 77:183–209, 2002.

QUINITIO, G.F., CABEROY, N.B., REYES Jr., D.M. Induction of sex change in female Epinephelus coioides by social control. Isr J Aquacult, 49: 77–83, 1997.

RAGHUVEER, K., SENTHILKUMARAN, B., SUDHAKUMARI, C.C., SRIDEVI, P., RAJAKUMAR, A., SINGH, R., MURUGANANTHKUMAR, R., MAJUMDAR, K.C. Dimorphic Expression of Various ranscription Factor and Steroidogenic Enzyme Genes during Gonadal Ontogeny in the Air-Breathing Catfish, Clarias gariepinus. Sex Dev, 5:213–223, 2011.

RAYMOND, C.S., SHAMU, C.E., SHEN, M.M., SEIFERT, K.J., HIRSCH, B., HODGKIN, J., ZARKOWER, D. Evidence for evolutionary conservation of sex determining genes. Nature 391:691–695, 1998.

RICE, W.R., HOLLAND, B. The enemies within: intergenomic conflict, interlocus contest evolution (ICE), and the intraspecific Red Queen. Behav Ecol Sociobiol., 41:1–10, 1997.

ROBERTSON, D.R. Social control of sex reversal in a coral reef fi sh. Science, 177: 1007–1009, 1972.

ROBINSON-RECHAVI, M., LAUDET, V. Evolutionary rates of duplicate genes in fish and mammals. Molecular Biology and Evolution, 18: 681–683, 2001.

ROBINSON-RECHAVI M, MARCHAND O, ESCRIVA H, BARDET PL, ZELUS D, HUGHES S, LAUDET V. Euteleost fish genomes are characterized by expansion of gene families. Genome Research, 11: 781–788, 2001.

SADOVY, Y., COLIN, P.L. Sexual development and sexuality in the Nassau grouper. J Fish Biol., 46: 962-976, 1995.

SADOVY, Y., SHAPIRO, Y. Criteria for the Diagnosis of Hermaphroditism in Fishes. Copeia, 1: 136-156, 1987.

SADOVY DE MITCHESON, Y., LIU, M. Functional hermaphroditism in teleosts. F I SH and F I SHERIES, 9: 1–43, 2008.

SAITO, D., MORINAGA, C., AOKI, Y., NAKAMURA, S., MITANI, H., FURUTANI-SEIKI, M., KONDOH, H., TANAKA, M. Proliferation of germ cells during gonadal sex differentiation in medaka: insights from germ cell-depleted mutant zenzai. Dev Biol., 310: 280–290, 2007.

SANDRA, G.E., NORMA, M.M. Sexual determination and differentiation in teleost fish. Rev Fish Biol Fisheries, 20:101–121, 2010.

SAOSHIRO, S., KAWAGUCHI, Y., HAYAKAWA, Y., KOBAYASHI, M. Sexual bipotentiality of behavior in male and female goldfish. General and Comparative Endocrinology, 181: 265–270, 2013.

SATO, T., ENDO, T., YAMAHIRA, K., HAMAGUCHI, S., SAKAIZUMI, M. Induction of female-to-male sex reversal by high temperature treatment in Medaka, Oryzias latipes. Zool Sci., 22:985–988, 2005.

SAWYER, S.J., GERSTNER, K.A., CALLARD, G.V. Real-time PCR analysis of cytochrome P450 aromatase expression in zebrafish: Gene specific tissue distribution, sex differences, developmental programming, and estrogen regulation. Gen Comp Endocrinol, 147: 108–117, 2006.

SCHARTL, M.A. A comparitive view on sex determination in medaka. Mech. Dev., 121:639-645, 2004.

SCHASCHL, H., TOBLER, M., PLATH, M., PENN, DUSTIN, J., SCHLUPP, I. Polymorphic MHC loci in an asexual fish, the amazon molly (Poecilia formosa; Poeciliidae). Molecular Ecology, 17: 5220–5230, 2008.

SHAPIRO, D.Y., MARCONATO, A., YOSHIKAWA, T. Sperm economy of a coral reef fish. Ecology, 75: 1334–1344, 1994.

SOBRINHO, I., DE BRITO, R. Evidence for positive selection in the gene fruitless in Anastrepha fruit flies. BMC Evol Biol., 10:293, 2010.

SOGARD, S.M., GILBERT-HORVATH, E., ANDERSON, E.C., FISHER, R., BERKELEY, S.A., GARZA, J.C. Multiple paternity in viviparous kelp rockfish, Sebastes atrovirens. Environ Biol Fish., 81:7–13, 2008.

SORHANNUS, U., KOSAKOVSKY POND, S. Evidence for positive selection on a sexual reproduction gene in the diatom genus Thalassiosira (Bacillariophyta). J Mol Evol., 63:231–239, 2006.

SWANSON, W.J., NIELSEN, R., YANG, Q. Pervasive adaptive evolution in mammalian fertilization proteins. Mol Biol Evol., 20:18–20, 2003.

TABORSKY, M. Sneakers, satellites and helpers: parasitic and cooperative behaviour in fi sh reproduction. Adv Study Behav., 23: 1–100, 1994.

VACQUIER, V.D., SWANSON, W.J. Selection in the rapid evolution of gamete recognition proteins in marine invertebrates. Cold Spring Harb Perspect Biol., 3:a002931, 2011.

VANDEPOELE, K., de VOS, W., TAYLOR, J.S., MEYER, A., de PEER, Y. Major events in the genome evolution of vertebrates: paranome age and size differ considerably between rayfinned fishes and land vertebrates. Proceedings of the National Academies of Sciences, USA 101: 1638–1643, 2004.

VALENZUELA, N. Sexual development and the evolution of sex determination. Sex Dev., 2:64-72, 2008.

VOLFF, J.N., NANDA, I., SCHMID, M., SCHARTL, M.A. Governing sex determination in fish: regulatory putsches and ephemeral dictators. Sex Develop., 1:85-99, 2007.

VON HOFSTEN, J., OLSSON, P. E. Zebrafish sex determination and differentiation: Involvement of FTZ-F1 genes. Reprod Biol Endocrinol., 3: 63, 2005.

VON HOFSTEN, J., LARSSON, A., OLSSON, P.E. Novel steroidogenic factor-1homolog (ff1d) is coexpressed with anti-Mullerian hormone (AMH) in zebrafish. Dev Dyn, 233: 595–604, 2005.

WARNER, R.R., HOFFMAN, S.G. Local population size as a determinant of mating system and sexual composition in two tropical marine fishes (Thalassoma sp.). Evolution 34: 508–518, 1980.

WEI, G., MAHOWALD, A.P. The germline: Familiar and newly uncovered properties. Annu. Rev. Genet., 28:309-324, 1994.

WILKINS, A. Moving up the hierarchy: a hypothesis on the evolution of a genetic sex determination pathway. BioEssays 17:71–77, 1995.

WOURMS, J.P. Viviparity: the maternal-fetal relationships in fishes. Am Zool., 21(2):473–515, 1981.

www.fishbase.org: Busca realizada em 10/10/2013.

YANO, A., GUYOMARD, R., NICOL, B., JOUANNO, E., QUILLET, E., KLOPP, C., CABAU, C., BOUCHEZ, O., FOSTIER, A., GUIGUEN, Y. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr Biol. 22:1423–1428, 2012.

ZHANG, Q., SUN, X., QI, J., WANG, Z., WANG, X., WANG, X., ZHAI, T. Sex Determination Mechanisms in Fish. J. Ocean Univ. China, (Oceanic and Coastal Sea Research) 8: 155-160, 2009.


Texto completo: PDF

Apontamentos

  • Não há apontamentos.


 


 

 

Counters
Visitas