Lesões cerebrais e perfil hematoimunológico em Oreochromis niloticus após ingestão de ração infectada com Streptococcus agalactiae

Marco Shizuo Owatari, Maurício Laterça Martins, José Luiz Pedreira Mouriño

Resumo


O objetivo do estudo foi avaliar o tecido cerebral e o sangue de tilápia-do-nilo após ingestão de ração contaminada por Streptococcus agalactiae. 90 peixes foram alocados em seis unidades experimentais, sendo quatro tratamentos e duas unidades controle, totalizando 15 animais por tanque. Os peixes receberam o inóculo bacteriano via ração infectada, com um volume de 100 μL g ração –1 [109 UFC], enquanto os peixes do grupo controle receberam a mesma ração, sem o inóculo bacteriano. Foram realizadas duas coletas de amostras biológicas. A primeira coleta ocorreu no sétimo dia pós-infecção e a segunda coleta no décimo quarto dia pós-infecção. Amostras de tecido do cérebro e alíquotas de sangue foram coletadas de 24 peixes por tratamento para análises histológicas e hematoimunológicas. As análises histológicas do presente estudo revelaram que no tecido cerebral a intensidade das lesões não se altera entre o sétimo e o décimo quarto dia. Na hematoimunologia, houve alterações significativas entre o sétimo e o décimo quarto dia na CHCM, no hematócrito, no número de trombócitos e neutrófilos, bem como na quantidade de lisozima.


Palavras-chave


Bacteriose; Tilápia; Infecção; Estreptococose.

Referências


AGAMY, E. (2012). Histopathological liver alterations in juvenile rabbit fish (Siganus canaliculatus) exposed to light Arabian crude oil, dispersed oil and dispersant. Ecotoxicology and environmental safety, 75, 171-179. https://doi.org/10.1016/j.ecoenv.2011.09.010.

AMAL, M.N.A. & ZAMRI-SAAD, M. (2011). Streptococcosis in tilapia (Oreochromis niloticus): a review. Pertanika Journal of Tropical Agricultural Science, 34(2), 195-206.

AMAR, E.C.; KIRON, V.; SATOH, S.; OKAMOTO, N. & WATANABE, T. (2000). Effects of dietary β‐carotene on the immune response of rainbow trout Oncorhynchus mykiss. Fisheries Science, 66(6), 1068-1075. https://doi.org/10.1046/j.1444-2906.2000.00170.x.

BRUM, A.; CARDOSO, L.; CHAGAS, E.C.; CHAVES, F.C.M., MOURIÑO, J.L.P., & MARTINS, M.L. (2018). Histological changes in Nile tilapia fed essential oils of clove basil and ginger after challenge with Streptococcus agalactiae. Aquaculture, 490, 98-107. https://doi.org/10.1016/j.aquaculture.2018.02.040.

COLLIER, H.B. (1944). Standardization of blood haemoglobin determinations. Canadian Medical Association Journal, 50(6), 550-552.

FAZIO, F. (2019). Fish hematology analysis as an important tool of aquaculture: a review. Aquaculture, 500, 237-242. https://doi.org/10.1016/j.aquaculture.2018.10.030.

GONG, M. (2014). Efficacy of lysozyme as an alternative to antibiotics for broiler chickens.

ISHIKAWA, N.M., RANZANI-PAIVA, M.J.T., LOMBARDI, J.V. (2008). Metodologia para quantificação de leucócitos totais em peixe, Oreochromis niloticus. Archives of Veterinary Science, 13, 54-63. http://hdl.handle.net/11449/70526.

JESUS, G.F.A.; OWATARI, M.S.; PEREIRA, S.A.; SILVA, B.C.; SYRACUSE, N.M.; LOPES, G.R.; ADDAM, K.; CARDOSO, L., MOURIÑO, J.L.P., & MARTINS, M.L. (2021). Effects of sodium butyrate and Lippia origanoides essential oil blend on growth, intestinal microbiota, histology, and haemato-immunological response of Nile tilapia. Fish & Shellfish Immunology, 117, 62-69. https://doi.org/10.1016/j.fsi.2021.07.008.

PAL, R.R.; BAIDYA, A.K.; MAMOU, G.; BHATTACHARYA, S.; SOCOL, Y.; KOBI, S.; KATSOWICH, N.; BEN-YEHUDA, S.; & ROSENSHINE, I. (2019). Pathogenic E. coli extracts nutrients from infected host cells utilizing injectisome components. Cell, 177(3), 683-696. https://doi.org/10.1016/j.cell.2019.02.022.

PALANG, I.; WITHYACHUMNARNKUL, B.; SENAPIN, S.; SIRIMANAPONG, W. & VANICHVIRIYAKIT, R. (2020). Brain histopathology in red tilapia Oreochromis sp. experimentally infected with Streptococcus agalactiae serotype III. Microscopy Research and Technique, 83(8), 877-888. https://doi.org/10.1002/jemt.23481.

POPMA, T.J. & LOVSHIN, L.L. (1996). Worldwide prospects for commercial production of tilapia. Alabama: International Center for Aquaculture and Aquatic Environments, 26 p.

PRIDGEON, J.W. & KLESIUS, P.H. (2012). Major bacterial diseases in aquaculture and their vaccine development. CABI Reviews, 7, 1-16. https://doi.org/10.1079/PAVSNNR20127048.

RANZANI-PAIVA, M.J.T.; DE PÁDUA, S.B., TAVARES-DIAS, M., & EGAMI, M.I. (2013). Métodos para análise hematológica em peixes. Editora da Universidade Estadual de Maringá-EDUEM.

RIBEIRO, H.J.; PROCÓPIO, M.S.; GOMES, J.M.M., VIEIRA, F.O.; RUSSO, R.C.; BALZUWEIT, K.; CHIARINI-GARCIA, H.; CASTRO, A.C. S.; RIZZO, C. & CORRÊA, J.D. (2011). Functional dissimilarity of melanomacrophage centres in the liver and spleen from females of the teleost fish Prochilodus argenteus. Cell and Tissue Research, 346(3), 417-425.

ROBERTS, R.J. (2012). Fish pathology. John Wiley & Sons. https://doi.org/10.1007/s00441-011-1286-3.

SAHOO, N.R.; KUMAR, P.; BHUSAN, B.; BHATTACHARYA, T.K.; DAYAL, S. & SAHOO, M. (2012). Lysozyme in livestock: a guide to selection for disease resistance: a review. Journal of Animal Science Advances, 2(4), 347-360.

SCHWAIGER, J.; WANKE, R.; ADAM, S.; PAWERT, M.; HONNEN, W. & TRIEBSKORN, R. (1997). The use of histopathological indicators to evaluate contaminant-related stress in fish. Journal of Aquatic Ecosystem Stress and Recovery, 6(1), 75-86. https://doi.org/10.1023/A:1008212000208.

SILVA, B.C.; MARTINS, M.L.; JATOBÁ, A.; BUGLIONE NETO, C.C.; VIEIRA, F.N.; PEREIRA, G.V.; JERÔNIMO, G.T.; SEIFFERT, W. Q. & MOURIÑO, J.L.P. (2009). Hematological and immunological responses of Nile tilapia after polyvalent vaccine administration by different routes. Pesquisa Veterinária Brasileira 29(11), 874-880. http://dx.doi.org/10.1590/S0100-736X2009001100002.

SOTO, E.; ZAYAS, M.; TOBAR, J.; ILLANES, O.; YOUNT, S.; FRANCIS, S. & DENNIS, M.M. (2016). Laboratory-controlled challenges of Nile tilapia (Oreochromis niloticus) with Streptococcus agalactiae: comparisons between immersion, oral, intracoelomic and intramuscular routes of infection. Journal of Comparative Pathology, 155 (4), 339-345. https://doi.org/10.1016/j.jcpa.2016.09.003.

SUANYUK, N.; KONG, F.; KO, D.; GILBERT, G.L.; SUPAMATTAYA, K.; 2008. Occurrence of rare genotypes of Streptococcus agalactiae in cultured red tilapia Oreochromis sp. and Nile tilapia O. niloticus in Thailand—relationship to human isolates? Aquaculture, 284 (1–4), 35–40. https://doi.org/10.1016/j.aquaculture.2008.07.034.

SUN, J.; FANG, W.; KE, B.; HE, D.; LIANG, Y.; NING, D.; TAN, H.; PENG, H.; WANG, Y.; MA, Y.; KE, C. & DENG X. (2016). Inapparent Streptococcus agalactiae infection in adult/commercial tilapia. Scientific Reports, 6, 26319. https://doi.org/10.1038/srep26319.

TATTIYAPONG, P.; DACHAVICHITLEAD, W. & SURACHETPONG, W. (2017). Experimental infection of Tilapia Lake Virus (TiLV) in Nile tilapia (Oreochromis niloticus) and red tilapia (Oreochromis spp.). Veterinary Microbiology, 207, 170-177. https://doi.org/10.1016/j.vetmic.2017.06.014.

TAVARES-DIAS, M. & MARTINS, M. L. (2017). An overall estimation of losses caused by diseases in the Brazilian fish farms. Journal of Parasitic Diseases, 41(4), 913-918. https://doi.org/10.1007/s12639-017-0938-y.

THRALL, M.A. (2007). Hematologia e bioquímica clínica veterinária. Editora Roca.

TWETEN, R.K. & CAPARON, M. (2005). Injectosomes in Gram‐Positive Bacteria. Structural Biology of Bacterial Pathogenesis, 223-239. https://doi.org/10.1128/9781555818395.ch11.

YANONG, R. P., & FRANCIS-FLOYD, R. (2002). Streptococcal infections of fish. Florida Cooperative Extension Service. IFAS, University of Florida, pp. 1-5.

ZHANG, Z.; LAN, J.; LI, Y.; HU, M.; YU, A.; ZHANG, J., & WEI, S. (2018). The pathogenic and antimicrobial characteristics of an emerging Streptococcus agalactiae serotype IX in Tilapia. Microbial Pathogenesis, 122, 39-45. https://doi.org/10.1016/j.micpath.2018.05.053.


Texto completo: PDF

Apontamentos

  • Não há apontamentos.


 


 

 

Counters
Visitas