Análise genômica de Burkholderia mallei e Burkholderia pseudomallei: dois patógenos de primeira grandeza e de genomas surpreendentemente complexos

M.C. Diniz, K.M. Farias, A.C.L.P. Pacheco, D.A. Viana, R. Araújo-Filho, A.P.S. Lima, Raimundo Beserra da Costa, Diana Magalhães de Oliveira

Resumo


O gênero Burkholderia constitui mais de 40 espécies, incluindo genomovares entre bactérias identificadas anteriormente como parte do complexo B. cepacia (Bcc), além de B. mallei (agente causal do mormo) e a B. pseudomallei (agente causal da melioidose ou pseudomormo). B. mallei e B. pseudomallei foram escolhidos como alvos deste trabalho exatamente pela incrível capacidade zoonótica (de certo modo, compartilhada na letalidade potencial para humanos e animais) e risco iminente à saúde pública em geral, assim como também por serem potenciais agentes bioterroristas, principalmente pela habilidade de infecção por aerossóis e a inexistência de vacinas efetivas. Ressalta-se, aqui, o caráter de re-emergência das zoonoses em geral, não só no Brasil, mas no mundo inteiro, em que aproximadamente 75% das doenças infecciosas humanas recém-emergentes são de origem animal; com a incrível porcentagem de cerca 60% de todos os patógenos humanos serem, em essência, zoonóticos. Apesar da relativa antiguidade das duas doenças, pouco se sabe sobre os detalhes e mecanismos de virulência e patogenicidade em mormo e melioidose. Neste trabalho foram usadas vários recursos e ferramentas de Bioinformática para investigar genes e produtos gênicos putativos em cromossomos e replicons seqüenciados dos genomas de B. mallei e B. pseudomallei, numa abordagem patogenômica visando a identificação de genes representativos de fatores de virulência associados com uma lesão-chave nas duas doenças, a formação de granulomas/piogranulomas. Granulomas são respostas localizadas de inflamação crônica capazes de reter os patógenos em seu interior, sendo, assim, sítios estratégicos da infecção. Os resultados in silico ajudaram a formar um painel preliminar contendo dezoito (18) ortólogos putativos, excelentes alvos para futuros screenings experimentais que venham a caracterizar precisamente suas funções na atividade granulomatogênica de Burkholderia.

Palavras-chave


Burkholderia mallei; mormo; Burkholderia pseudomallei; melioidose (pseudomormo); genoma; analise patogenômica; granulomas

Referências


ACHA, P.; SZYFRES, B. Zoonosis y enfermedades transmisibles comunes al hombre y a los animales. 2 Ed. Organizacion Panamericana de La salud/ Washinton, 989p, 1986.

ADAGRO; Agência de Defesa e Fiscalização Agropecuária de Pernambuco. http://www.adagro.pe.gov.br. 2008. Fanny Simis, Ana Carolina Messias de Souza, Aderaldo Alexandrino de Freitas. Ocorrência Do Mormo No Estado De Pernambuco (2003-2006).

ALIBASOGLU, M.; YESILDERE, T.; CALISLAR, T.; CALSIKAN, U. Malleus outbreak in lions in the Istanbul Zoo. Berl Munch Tierarztl. H. Wochenschr. v. 99, p.57-63, 1986.

ALTSCHUL, S.F.; MADDEN, T.L.; SCHAFFER, A.A. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, v.25, p.3389-3402, 1997.

ANDREWS, S.C.; ROBINSON, A.K.; RODRÍGUEZ-QUIÑONES, F. Bacterial iron homeostasis. FEMS Microbiol Rev v.27, p.215–237, 2003.

ATKINS, T.; PRIOR, R.G.; MACK, K.; RUSSELL, P.; NELSON, M.; OYSTON, P.C.F.; DOUGAN, G.; TITBALL, R.W. A mutant of Burkholderia pseudomallei, auxotrophic in the branched chain amino acids biosynthetic pathway, is attenuated and protective in a murine model of melioidosis. Infect. Immun. v.70, p.5290– 5294, 2002.

BARON, M.A.; PFALLER, F. C.; TENOVER, AND R.H.; YOLKEN (ed.), Manual of clinical microbiology, 8th ed. ASM Press, Washington, DC. p. 729-748, 2003.

BERNIER, S.P.; SILO-SUH, L.; WOODS, D.E.; OHMAN, D.E.; SOKOL, P.A. Comparative Analysis of Plant and Animal Models for characterization of Burkholderia cepacia Virulence. Infect. Immun., v.71, p.5306-5313, 2003.

BRAGA, M.D.M.; ALMEIDA, P.R.C. Primeira descrição de um caso autopsiado de melioidose no Estado do Ceará. Revista da Sociedade Brasileira de Medicina Tropical v.38, n.1, p.58-60, 2005.

BUELL, C.R.; JOARDAR, V.; LINDEBERG, M. et al. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000, Proc. Natl. Acad. Sci. USA v.100, p.10181–10186, 2003.

BURKHOLDER, W.H. Sour skin, a bacterial rot of onion bulbs. Phytopathology v.40, p.115-117, 1950.

Burkholderia Genome Database - http://burkholderia.com/b_cenocepacia.jsp CDC report. Centers for Disease Control and Prevention, USA Govnt. Laboratory-acquired human glanders—Maryland, May 2000. Morb. Mortal. Wkly. Rep. v.49, p.532-535, 2000.

CDC, Centers for Disease Control and Prevention, National Center for Zoonotic, Vector-Borne, and Enteric Diseases (ZVED) USA Govnt. 2008. http://www.cdc.gov/nczved.

CHAIN, P.S.G.; DENEF, V.J.; KONSTANTINIDIS, K.T.; et al. Inaugural Article: Burkholderia xenovorans LB400 harbors multi-replicon, 9.73Mpb menome shaped for versatility. Proc. Natl. Acad. Sci. USA v.103, p.15280-15287, 2006.

CHAOWAGUL, W.; WRITE, N.; DANCE, D.A.B. et al. Melioidosis: a major cause of community-acquired septicemia in northeastern Thailand. J Infect Dis. v.159, p.890–898, 1989.

CHUA, K.L.; CHAN, Y.Y.; GAN, Y.H. Flagella Are Virulence Determinants of Burkholderia pseudomallei. Infect. Immun. v.71, p.1622–1629, 2003.

COLLINS, H.L. Withholding iron as a cellular defence mechanism - friend or foe? European Journal of Immunology v.38, n.7, p.1803–1806, 2008.

CURRIE, B.J. Melioidosis: an important cause of pneumonia in residents of and travelers returned from endemic regions. Eur. Respir. J. v.21, p.1069–1077, 2003.

CURRIE, B.J.; FISHER, D.A.; ANSTEY, N.M.; JACUPS, S.P. Melioidosis: acute and chronic disease, relapse and re-activation. Trans. R. Soc. Trop. Med. Hyg. v.94, p.301-304, 2000.

DA SILVA, A.C.R.; FERRO, J.A.; REINACH, F.C. et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities, Nature v.417, p.459–463, 2002.

DANCE, D.A.B. Melioidosis. Current Opnion in Infectious Disease v.15, p.127- 32, 2002.

DUBARRY, N.; PASTA, F.; LANE, D. ParABS Systems of the Four Replicons of Burkholderia cenocepacia: New Chromosome Centromeres Confer Partition Specificity. Journal of Bacteriology. v.188, n.4, p.1489-1496, 2006.

DESHAZER, D.; BRETT, P. J.; BURTNICK, M.N.; WOODS, D.E. Molecular Characterization of Genetic Loci Required for Secretion of Exoproducts in Burkholderia pseudomallei. J. Bacteriol. v.181, p.4661–4664, 1999.

DOBRINDT, U,; HOCHHUT, B.; HENTSCHEL, U.; HACKER, J. Genomic islands in pathogenic and environmental microorganisms. Nature Rev Microbiol v.2, p.414–424, 2004.

EDGAR, R.C. et al. A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, v.19, p.113, 2004.

EDDY, S.R. Profile hidden Markov models. Bioinformatics, v.14, p.755–763, 1998.

EGAN, E.S.; FOGEL, M.A.; WALDOR, M.K. Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes. Mol. Microbiol., v.56, p.1129-1138, 2005.

FUSHAN, A.; MONASTYRSKAYA, G.; ABAEV, I. et al. Genome-wide identification and mapping of variable sequences in the genomes of Burkholderia mallei and Burkholderia pseudomallei. Res Microbiol., v.156, p.278– 288, 2005.

GAN, Y.H.; CHUA, K.L.; CHUA, H.H.; LIU, B.P; HII, C.S; CHONG, H.L. TAN, P. Characterization of Burkholderia pseudomallei infection and identification of novel virulence factors using a Caenorhabditis elegans host system. Mol Microbiol., v.44, p.1185– 1197, 2002.

GENEDB - Wellcome Trust Functional Genomics Development Initiative, Pathogen’s Sequencing Unit. www.genedb.org

GILLIGAN, P.H.; LUM, G.; VANDAMME, P.; WHITTIER, S. Burkholderia, Stenotrophomonas, Ralstonia, Brevundimonas, Comamonas, and Acidovorax. In P. R. Murray, E. J.

GODOY, D.; RANDLE, G.; SIMPSON, A. J. et al. Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei. J. Clin. Microbiol., v.41, p.2068–2079, 2003.

GOUGH, J.; KARPLUS, K.; HUGHEY, R.; CHOTHIA, C. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol., v.313, n.4, p.903-19, 2001.

GOUVEIA, J.J.; VASCONCELOS, E.J.R.; PACHECO, A.C.L. et al. Intraflagellar transport (IFT) complex in Leishmania spp.: In Silico genome-wide screening and annotation of gene function. Genet Mol Res., v.6, n.4, p.675-689, 2007.

HACKER, J.; CARNIEL, E. Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep v.2, p.376–381, 2001.

HARVEY, S.P.; MINTER, J.M. Ribotyping of Burkholderia mallei isolates. FEMS Immunol Med Microbiol., v.44, p.91–97, 2005.

HIRSH, D.C.; ZEE, Y.C. Microbiologia Veterinária. 1° ed. Rio de Janeiro: Guanabara Koogan, 446p, 2003.

HOLDEN, M.T.G.; TITBALL, R.W.; PEACOCK, S.J. et al. Genomic plasticy of the causative agent of melioidisis, Burkholderia pseudomallei. PNAS, v.101, n.39, 2004.

JONES, A.L.; BEVERIDGE, T.J.; WOODS, D.E. Intracellular survival of Burkholderia pseudomallei. Infect. Immun., v.64, p.782-790, 1996.

KOLSTO, A.B. Time for a fresh look at the bacterial chromosome. Trends Microbiol., v.7, p.223-226, 1999.

KOONPAEW, S.; UBOL, M.N.; SIRISINHA, S.; WHITE, N.J.; CHAIYAROJ, S.C. Genome fingerprinting by pulsed-field gel electrophoresis of isolates of Burkholderia pseudomallei from patients with melioidosis in Thailand. Acta Trop., v.74, p.187–191, 2000.

LETUNIC, I.; COPLEY, R.R.; PILS, B.; PINKERT, S.; SCHULTZ, J.; BORK, P.; SMART, 5: domains in the context of genomes and networks. Nucleic Acids Res., v.34, p.D257-D260, 2006.

LIVNY, J.; YAMAICHI, Y.; WALDOR, M.K. Distribution of Centromere-Like parS Sites in Bacteria: Insights from Comparative Genomics. Journal of Bacteriology, v.189, n.23, p.8693-8703, 2007.

LESSIE, T.G.; HENDRICKSON, W.; MANNING, B.D.; DEVEREUX, R. Genomic complexity and plasticity of Burkholderia cepacia. FEMS Microbiol Lett. v.144, p.117–128, 1996.

LOPEZ, J.; COPPS, J.; WILHELMSEN, C. et al. Characterization of experimental equine glanders. Microbes Infect., v.5, p.1125–1131, 2003.

MAHENTHIRALINGAM, E.; URBAN, T.A.; GOLDBERG, J.B. The multifarious, multireplicon Burkholderia cepacia complex. Nat. Rev. Microbiol., v.3, p.144-156, 2005.

MOORE, R.A.; DESHAZER, D.; RECKSEIDLER, S.L.; WEISSMAN, A.; WOODS, D.E. Efflux-Mediated Aminoglycoside and Macrolide Resistance in Burkholderia pseudomallei. Antimicrob. Agents Chemother. v.43, p.465–470, 1999.

MOTA, R.A.; BRITO, M.F.; CASTRO, F.J.C.; MASSA, M. Mormo em eqüídeos nos Estados de Pernambuco e Alagoas. Pesq. Vet. Bras. v.20, n.4, p.155-159, 2000. NCBI – National Center for Biotechnology Information – www.ncbi.nlm.nih.gov

NELSON, K.E.; WEINEL, C.; PAULSEN, I.T. et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol., v.4, p.799–808, 2002.

NIERMAN, W.C.; DESHAZER, D.; KIM, H.S. et al. Structural flexibility in the Burkholderia mallei genome. PNAS, v.101, n.39, p.14246-14251, 2004.

O’QUINN, A.L.; WIEGAND, E.M.; JEDDELOH, J.A. Burkholderia pseudomallei kills the nematode Caenorhabditis elegans using an endotoxinmediated paralysis. Cell Microbiol., v.3, p.381– 393, 2001.

OU, K.; ONG, C.; KOH, S.Y. et al. Integrative genomic, transcriptional and proteomic diversity in natural isolates of the human pathogen Burkholderia pseudomallei. J Bacteriol., v.187, p.4276–4285, 2005.

PATHEMA – UM CENTRO DO NIAID Bioinformatics Resource Center (National Institute of Allergy and Infectious Diseases, dos EUA). http://pathema.jcvi.org/Burkholderia/beta/

PDB – Protein Data Bank -http://www.rcsb.org/pdb/home/home.do

QUINN, P.J.; MARKEY, B.K.; CARTER, M.E.; DONNELLY, W.J.; LEONARD, F.G. Microbiologia Veterinária e Doenças Infecciosas, Porto Alegre: Artmed, 2005.

ROGUL, M.; BRENDLE, J.J.; HAAPALA, D. K. & ALEXANDER, A. D. Nucleic Acid Similarities Among Pseudomonas pseudomallei, Pseudomonas multivorans, and Actinobacillus mallei. J. Bacteriol., v.101, p.827–835, 1970.

ROLIM, D.B.; VILAR, D.C.F.L.; SOUSA, A.Q.; MIRALLES, I.S. et al. Melioidosis, northeastern Brazil. Emerg Infect Dis v.11, n.9, 2005. Disponível http://www.cdc.gov/ncidod/EID/vol11no09/05-0493.htm

ROTZ, L.D.; KHAN, A.S.; LILLIBRIDGE, S.R.; OSTROFF, S.M.; HUGHES, J.M. Public health assessment of potential biological terrorism agents. Emerg Infect Dis., v.8, n.2, p.225-230, 2002.

RUTHERFORD, K.; PARKHILL, J.; CROOK, J. et al. Artemis: sequence visualization and annotation. Bioinformatics. v.16, p.944-945, 2000.

SALANOUBAT, M.; GENIN, S.; ARTIGUENAVE, F. et al. Genome sequence of the plant pathogen Ralstonia solanacearum, Nature. 415, 497–502, 2002.

SHELL, M.A.; LIPSCOMB, L.; DeSHAZER, D. Comparative genomics and an insect model rapidly identify novel virulence genes of Burkholderia mallei. J Bacteriol.. v.190, n.7, p.2306-2313, 2008.

SITTHIDET, C.; STEVENS, J.M.; CHANTRATITA, N. et al. (2008). Prevalence and sequence diversity in natural populations of Burkholderia species. J. Clin. Microbiol., v.46, p.2418-2422.

SOKOL, P.A.; DARLING, P.; WOODS, D.E, MAHENTHIRALINGAM, E., KOOI, C. Role of Ornibactin Biosynthesis in the Virulence of Burkholderia cepacia: Characterization of pvdA, the Gene Encoding L-Ornithine N5-Oxygenase. Infect Immun., v.67, p.4443–4455, 1999.

STEVENS, M.P.; HAQUE, A.; ATKINS, T. et al. Attenuated virulence and protective efficacy of a Burkholderia pseudomallei bsa type III secretion mutant in murine models of melioidosis. Microbiology, v.150, p.2669-76, 2004.

STEVENS, M.; WOOD, M.W.; TAYLOR, L.A. et al. An Inv/Mxi-Spa-like type III protein secretion system in Burkholderia pseudomallei modulates intracellular behaviour of the pathogen. Mol. Microb., v.46, p.649–659, 2004.

STOVER, C.K.; PHAM, X.Q.; ERWIN, A. L. et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen, Nature. v.406, p.959–964, 2000.

THANBICHLER, M.; SHAPIRO, L. Chromosome organization and segregation in bacteria. J. Struct. Biol., v.156, p.292-303, 2006.

THONGBOONKERD, V.; VANAPORN, M.; SONGTAWEE, N. et al. Altered Proteome in Burkholderia pseudomallei rpoE Operon Knockout Mutant: Insights into Mechanisms of rpoE Operon in Stress Tolerance, Survival, and Virulence. J. Proteome Res., v.6, n.4, p.1334 -1341, 2007. UniProt - Universal Protein Resource – www.uniprot.org/

URBAN, T.A.; GRIFFITH, A.; TOROK, A.M.; SMOLKIN, M.E.; BURNS, J.L.; GOLDBERG, J.B. Contribution of Burkholderia cenocepacia Flagella to Infectivity and Inflammation. Infect Immun., v.72, p.5126–5134, 2004.

VIGIAGRO, Ministério da Agricultura, Pecuária e Abastecimento (MAPA, 2008). Instrução Normativa nº 24, de 5 de abril de 2004. www.agricultura.gov.br/portal

WILSON, G.S.; MILES, A. Glanders and Melioidosis, p.1714-1717. In: Topley and Wilson’s Principles of Bacteriology and Immunity. Edward Arnold, London, 1964.

WHITE, N.J. Melioidosis. Lancet v.361, p.1715-1722, 2003.

WHITMORE, A. An account of a glanders-like disease in Rangoon. J. Hyg., v.13, p.1-34, 1913.

YABUUCHI, E.; KOSAKO, Y.; OYAIZU, H. et al. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (PALLERONI & HOLMES, 1981) comb. nov. Microbiology and Immunology, v.36, p.1251-1275, 1992.

YAMAICHI, Y.; FOGEL, M.A.; MCLEOD, S.M.; HUI, M.P.; WALDOR, M.K. Distinct Centromere-Like parS Sites on the Two Chromosomes of Vibrio spp. Journal of Bacteriology. v.189, n.14, p.5314-5324, 2007.


Texto completo: PDF

Apontamentos

  • Não há apontamentos.


 


 

 

Counters
Visitas