Análise genômica de Burkholderia mallei e Burkholderia pseudomallei: dois patógenos de primeira grandeza e de genomas surpreendentemente complexos

M.C. Diniz, K.M. Farias, A.C.L.P. Pacheco, D.A. Viana, R. Araújo-Filho, A.P.S. Lima, Raimundo Beserra da Costa, Diana Magalhães de Oliveira

Resumo


O gênero Burkholderia constitui mais de 40 espécies, incluindo genomovares entre bactérias identificadas anteriormente como parte do complexo B. cepacia (Bcc), além de B. mallei (agente causal do mormo) e a B. pseudomallei (agente causal da melioidose ou pseudomormo). B. mallei e B. pseudomallei foram escolhidos como alvos deste trabalho exatamente pela incrível capacidade zoonótica (de certo modo, compartilhada na letalidade potencial para humanos e animais) e risco iminente à saúde pública em geral, assim como também por serem potenciais agentes bioterroristas, principalmente pela habilidade de infecção por aerossóis e a inexistência de vacinas efetivas. Ressalta-se, aqui, o caráter de re-emergência das zoonoses em geral, não só no Brasil, mas no mundo inteiro, em que aproximadamente 75% das doenças infecciosas humanas recém-emergentes são de origem animal; com a incrível porcentagem de cerca 60% de todos os patógenos humanos serem, em essência, zoonóticos. Apesar da relativa antiguidade das duas doenças, pouco se sabe sobre os detalhes e mecanismos de virulência e patogenicidade em mormo e melioidose. Neste trabalho foram usadas vários recursos e ferramentas de Bioinformática para investigar genes e produtos gênicos putativos em cromossomos e replicons seqüenciados dos genomas de B. mallei e B. pseudomallei, numa abordagem patogenômica visando a identificação de genes representativos de fatores de virulência associados com uma lesão-chave nas duas doenças, a formação de granulomas/piogranulomas. Granulomas são respostas localizadas de inflamação crônica capazes de reter os patógenos em seu interior, sendo, assim, sítios estratégicos da infecção. Os resultados in silico ajudaram a formar um painel preliminar contendo dezoito (18) ortólogos putativos, excelentes alvos para futuros screenings experimentais que venham a caracterizar precisamente suas funções na atividade granulomatogênica de Burkholderia.

Palavras-chave


Burkholderia mallei; mormo; Burkholderia pseudomallei; melioidose (pseudomormo); genoma; analise patogenômica; granulomas

Referências


ACHA, P.; SZYFRES, B. Zoonosis y enfermedades transmisibles comunes al hombre y a los animales. 2 Ed. Organizacion Panamericana de La salud/ Washinton, 989p, 1986.

ADAGRO; Agência de Defesa e Fiscalização Agropecuária de Pernambuco. http://www.adagro.pe.gov.br. 2008. Fanny Simis, Ana Carolina Messias de Souza, Aderaldo Alexandrino de Freitas. Ocorrência Do Mormo No Estado De Pernambuco (2003-2006).

ALIBASOGLU, M.; YESILDERE, T.; CALISLAR, T.; CALSIKAN, U. Malleus outbreak in lions in the Istanbul Zoo. Berl Munch Tierarztl. H. Wochenschr. v. 99, p.57-63, 1986.

ALTSCHUL, S.F., MADDEN, T.L., SCHAFFER, A.A. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, v.25, p.3389-3402, 1997.

ANDREWS, S.C., ROBINSON, A.K., RODRÍGUEZ-QUIÑONES, F. Bacterial iron homeostasis. FEMS Microbiol Rev v.27, p.215–237, 2003.

ATKINS, T.; PRIOR, R.G.; MACK, K.; RUSSELL, P.; NELSON, M.; OYSTON, P.C.F.; DOUGAN, G.; TITBALL, R.W. A mutant of Burkholderia pseudomallei, auxotrophic in the branched chain amino acids biosynthetic pathway, is attenuated and protective in a murine model of melioidosis. Infect. Immun. v.70, p.5290– 5294, 2002.

BERNIER, S.P., SILO-SUH, L., WOODS, D.E., OHMAN, D.E., SOKOL, P.A. Comparative Analysis of Plant and Animal Models for characterization of Burkholderia cepacia Virulence. Infect. Immun., v.71, p.5306-5313, 2003.

BRAGA, M.D.M.; ALMEIDA, P.R.C. Primeira descrição de um caso autopsiado de melioidose no Estado do Ceará. Revista da Sociedade Brasileira de Medicina Tropical v.38, n.1, p.58-60, 2005.

BUELL, C.R., JOARDAR, V., LINDEBERG, M., et al. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000, Proc. Natl. Acad. Sci. USA v.100, p.10181–10186, 2003.

BURKHOLDER, W.H. Sour skin, a bacterial rot of onion bulbs. Phytopathology v.40, p.115-117, 1950.

Burkholderia Genome Database - http://burkholderia.com/b_cenocepacia.jsp CDC report. Centers for Disease Control and Prevention, USA Govnt. Laboratory-acquired human glanders—Maryland, May 2000. Morb. Mortal. Wkly. Rep. v.49, p.532-535, 2000.

CDC, Centers for Disease Control and Prevention, National Center for Zoonotic, Vector-Borne, and Enteric Diseases (ZVED) USA Govnt. 2008. http://www.cdc.gov/nczved.

CHAIN, P.S.G., DENEF, V.J., KONSTANTINIDIS, K.T., et al. Inaugural Article: Burkholderia xenovorans LB400 harbors multi-replicon, 9.73Mpb menome shaped for versatility. Proc. Natl. Acad. Sci. USA v.103, p.15280-15287, 2006.

CHAOWAGUL, W., WRITE, N., DANCE, D.A.B., et al. Melioidosis: a major cause of community-acquired septicemia in northeastern Thailand. J Infect Dis. v.159, p.890–898, 1989.

CHUA, K.L., CHAN, Y.Y., GAN, Y.H. Flagella Are Virulence Determinants of Burkholderia pseudomallei. Infect. Immun. v.71, p.1622–1629, 2003.

COLLINS, H.L. Withholding iron as a cellular defence mechanism - friend or foe? European Journal of Immunology v.38, n.7, p.1803–1806, 2008.

CURRIE, B.J. Melioidosis: an important cause of pneumonia in residents of and travelers returned from endemic regions. Eur. Respir. J. v.21, p.1069–1077, 2003.

CURRIE, B.J., FISHER, D.A., ANSTEY, N.M., JACUPS, S.P. Melioidosis: acute and chronic disease, relapse and re-activation. Trans. R. Soc. Trop. Med. Hyg. v.94, p.301-304, 2000.

DA SILVA, A.C.R., FERRO, J.A., REINACH, F.C., et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities, Nature v.417, p.459–463, 2002.

DANCE, D.A.B. Melioidosis. Current Opnion in Infectious Disease v.15, p.127- 32, 2002.

DUBARRY, N., PASTA, F., LANE, D. ParABS Systems of the Four Replicons of Burkholderia cenocepacia: New Chromosome Centromeres Confer Partition Specificity. Journal of Bacteriology. v.188, n.4, p.1489-1496, 2006.

DESHAZER, D., BRETT, P. J., BURTNICK, M.N., WOODS, D.E. Molecular Characterization of Genetic Loci Required for Secretion of Exoproducts in Burkholderia pseudomallei. J. Bacteriol. v.181, p.4661–4664, 1999.

DOBRINDT U, HOCHHUT B, HENTSCHEL U, HACKER J. Genomic islands in pathogenic and environmental microorganisms. Nature Rev Microbiol v.2, p.414–424, 2004.

EDGAR, R.C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, v.19, p.113, 2004.

EDDY, S.R. Profile hidden Markov models. Bioinformatics, v.14, p.755–763, 1998.

EGAN, E.S., FOGEL, M.A., WALDOR, M.K. Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes. Mol. Microbiol., v.56, p.1129-1138, 2005.

FUSHAN, A.; MONASTYRSKAYA, G.; ABAEV, I. et al. Genome-wide identification and mapping of variable sequences in the genomes of Burkholderia mallei and Burkholderia pseudomallei. Res Microbiol., v.156, p.278– 288, 2005.

GAN, Y.H.; CHUA, K.L.; CHUA, H.H.; LIU, B.P; HII, C.S; CHONG, H.L. TAN, P. Characterization of Burkholderia pseudomallei infection and identification of novel virulence factors using a Caenorhabditis elegans host system. Mol Microbiol., v.44, p.1185– 1197, 2002.

GENEDB - Wellcome Trust Functional Genomics Development Initiative, Pathogen’s Sequencing Unit. www.genedb.org

GILLIGAN, P.H., LUM, G., VANDAMME, P., WHITTIER, S. Burkholderia, Stenotrophomonas, Ralstonia, Brevundimonas, Comamonas, and Acidovorax. In P. R. Murray, E. J.

BARON, M.A. PFALLER, F. C. TENOVER, AND R. H. YOLKEN (ed.), Manual of clinical microbiology, 8th ed. ASM Press, Washington, DC. p. 729-748, 2003.

GODOY, D., RANDLE, G., SIMPSON, A. J. et al. Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei. J. Clin. Microbiol., v.41, p.2068–2079, 2003.

GOUGH J, KARPLUS K, HUGHEY R, CHOTHIA C. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol., v.313, n.4, p.903-19, 2001.

GOUVEIA, J.J., VASCONCELOS, E.J.R., PACHECO, A.C.L., et al. Intraflagellar transport (IFT) complex in Leishmania spp.: In Silico genome-wide screening and annotation of gene function. Genet Mol Res., v.6, n.4, p.675-689, 2007.

HACKER J, CARNIEL E. Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep v.2, p.376–381, 2001.

HARVEY, S.P., MINTER, J.M. Ribotyping of Burkholderia mallei isolates. FEMS Immunol Med Microbiol., v.44, p.91–97, 2005.

HIRSH, D.C.; ZEE, Y.C. Microbiologia Veterinária. 1° ed. Rio de Janeiro: Guanabara Koogan, 446p, 2003.

HOLDEN, M.T.G., TITBALL, R.W., PEACOCK, S.J., et al. Genomic plasticy of the causative agent of melioidisis, Burkholderia pseudomallei. PNAS, v.101, n.39, 2004.

JONES, A.L., BEVERIDGE, T.J., WOODS, D.E. Intracellular survival of Burkholderia pseudomallei. Infect. Immun., v.64, p.782-790, 1996.

KOLSTO, A.B. Time for a fresh look at the bacterial chromosome. Trends Microbiol., v.7, p.223-226, 1999.

KOONPAEW, S., UBOL, M.N., SIRISINHA, S., WHITE, N.J., CHAIYAROJ, S.C. Genome fingerprinting by pulsed-field gel electrophoresis of isolates of Burkholderia pseudomallei from patients with melioidosis in Thailand. Acta Trop., v.74, p.187–191, 2000.

LETUNIC, I., COPLEY, R.R., PILS, B., PINKERT, S., SCHULTZ, J., BORK, P. SMART 5: domains in the context of genomes and networks. Nucleic Acids Res., v.34, p.D257-D260, 2006.

LIVNY, J., YAMAICHI, Y., WALDOR, M.K. Distribution of Centromere-Like parS Sites in Bacteria: Insights from Comparative Genomics. Journal of Bacteriology, v.189, n.23, p.8693-8703, 2007.

LESSIE, T.G., HENDRICKSON, W., MANNING, B.D., DEVEREUX, R. Genomic complexity and plasticity of Burkholderia cepacia. FEMS Microbiol Lett. v.144, p.117–128, 1996.

LOPEZ, J., COPPS, J., WILHELMSEN, C. et al. Characterization of experimental equine glanders. Microbes Infect., v.5, p.1125–1131, 2003.

MAHENTHIRALINGAM, E., URBAN, T.A., GOLDBERG, J.B. The multifarious, multireplicon Burkholderia cepacia complex. Nat. Rev. Microbiol., v.3, p.144-156, 2005.

MOORE, R.A., DESHAZER, D., RECKSEIDLER, S.L., WEISSMAN, A., WOODS, D.E. Efflux-Mediated Aminoglycoside and Macrolide Resistance in Burkholderia pseudomallei. Antimicrob. Agents Chemother. v.43, p.465–470, 1999.

MOTA, R.A., BRITO, M.F., CASTRO, F.J.C., MASSA, M. Mormo em eqüídeos nos Estados de Pernambuco e Alagoas. Pesq. Vet. Bras. v.20, n.4, p.155-159, 2000. NCBI – National Center for Biotechnology Information – www.ncbi.nlm.nih.gov

NELSON, K.E., WEINEL, C., PAULSEN, I.T., et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol., v.4, p.799–808, 2002.

NIERMAN, W.C., DESHAZER, D., KIM, H.S., et al. Structural flexibility in the Burkholderia mallei genome. PNAS, v.101, n.39, p.14246-14251, 2004.

O’QUINN, A.L.; WIEGAND, E.M.; JEDDELOH, J.A. Burkholderia pseudomallei kills the nematode Caenorhabditis elegans using an endotoxinmediated paralysis. Cell Microbiol., v.3, p.381– 393, 2001.

OU, K.; ONG, C.; KOH, S.Y. et al. Integrative genomic, transcriptional and proteomic diversity in natural isolates of the human pathogen Burkholderia pseudomallei. J Bacteriol., v.187, p.4276–4285, 2005.

PATHEMA – UM CENTRO DO NIAID Bioinformatics Resource Center (National Institute of Allergy and Infectious Diseases, dos EUA). http://pathema.jcvi.org/Burkholderia/beta/

PDB – Protein Data Bank -http://www.rcsb.org/pdb/home/home.do

QUINN, P.J.; MARKEY, B.K.; CARTER, M.E.; DONNELLY, W.J.; LEONARD, F.G. Microbiologia Veterinária e Doenças Infecciosas, Porto Alegre: Artmed, 2005.

ROGUL, M., BRENDLE, J.J., HAAPALA, D. K. & ALEXANDER, A. D. Nucleic Acid Similarities Among Pseudomonas pseudomallei, Pseudomonas multivorans, and Actinobacillus mallei. J. Bacteriol., v.101, p.827–835, 1970.

ROLIM, D.B., VILAR, D.C.F.L., SOUSA, A.Q., MIRALLES, I.S., et al. Melioidosis, northeastern Brazil. Emerg Infect Dis v.11, n.9, 2005. Disponível http://www.cdc.gov/ncidod/EID/vol11no09/05-0493.htm

ROTZ, L.D., KHAN, A.S., LILLIBRIDGE, S.R., OSTROFF, S.M., HUGHES, J.M. Public health assessment of potential biological terrorism agents. Emerg Infect Dis., v.8, n.2, p.225-230, 2002.

RUTHERFORD, K., PARKHILL, J., CROOK, J., et al. Artemis: sequence visualization and annotation. Bioinformatics. v.16, p.944-945, 2000.

SALANOUBAT, M., GENIN, S., ARTIGUENAVE, F., et al. Genome sequence of the plant pathogen Ralstonia solanacearum, Nature. 415, 497–502, 2002.

CHELL, M.A., LIPSCOMB, L., DeSHAZER, D. Comparative genomics and an insect model rapidly identify novel virulence genes of Burkholderia mallei. J Bacteriol.. v.190, n.7, p.2306-2313, 2008.

SITTHIDET, C., STEVENS, J.M., CHANTRATITA, N. et al. (2008). Prevalence and sequence diversity in natural populations of Burkholderia species. J. Clin. Microbiol., v.46, p.2418-2422.

SOKOL, P.A., DARLING, P., WOODS, D.E, MAHENTHIRALINGAM, E., KOOI, C. Role of Ornibactin Biosynthesis in the Virulence of Burkholderia cepacia: Characterization of pvdA, the Gene Encoding L-Ornithine N5-Oxygenase. Infect Immun., v.67, p.4443–4455, 1999.

STEVENS, M.P., HAQUE, A., ATKINS, T., et al. Attenuated virulence and protective efficacy of a Burkholderia pseudomallei bsa type III secretion mutant in murine models of melioidosis. Microbiology, v.150, p.2669-76, 2004.

STEVENS, M., WOOD, M.W., TAYLOR, L.A. et al. An Inv/Mxi-Spa-like type III protein secretion system in Burkholderia pseudomallei modulates intracellular behaviour of the pathogen. Mol. Microb., v.46, p.649–659, 2004.

STOVER, C.K., PHAM, X.Q., ERWIN, A. L., et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen, Nature. v.406, p.959–964, 2000.

THANBICHLER, M., SHAPIRO, L. Chromosome organization and segregation in bacteria. J. Struct. Biol., v.156, p.292-303, 2006.

THONGBOONKERD, V., VANAPORN, M., SONGTAWEE, N., et al. Altered Proteome in Burkholderia pseudomallei rpoE Operon Knockout Mutant: Insights into Mechanisms of rpoE Operon in Stress Tolerance, Survival, and Virulence. J. Proteome Res., v.6, n.4, p.1334 -1341, 2007. UniProt - Universal Protein Resource – www.uniprot.org/

URBAN, T.A., GRIFFITH, A., TOROK, A.M., SMOLKIN, M.E., BURNS, J.L., GOLDBERG, J.B. Contribution of Burkholderia cenocepacia Flagella to Infectivity and Inflammation. Infect Immun., v.72, p.5126–5134, 2004.

VIGIAGRO, Ministério da Agricultura, Pecuária e Abastecimento (MAPA, 2008). Instrução Normativa nº 24, de 5 de abril de 2004. www.agricultura.gov.br/portal

WILSON, G.S., MILES, A. Glanders and Melioidosis, p.1714-1717. In: Topley and Wilson’s Principles of Bacteriology and Immunity. Edward Arnold, London, 1964.

WHITE, N. J. Melioidosis. Lancet v.361, p.1715-1722, 2003.

WHITMORE, A. An account of a glanders-like disease in Rangoon. J. Hyg., v.13, p.1-34, 1913.

YABUUCHI, E., KOSAKO, Y., OYAIZU, H.; et al. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (PALLERONI & HOLMES, 1981) comb. nov. Microbiology and Immunology, v.36, p.1251-1275, 1992.

YAMAICHI, Y., FOGEL, M.A., MCLEOD, S.M., HUI, M.P., WALDOR, M.K. Distinct Centromere-Like parS Sites on the Two Chromosomes of Vibrio spp. Journal of Bacteriology. v.189, n.14, p.5314-5324, 2007.


Texto completo: PDF

Apontamentos

  • Não há apontamentos.


 


 

 

Counters
Visitas